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The origin of spike adding in bursting activity is studied in a reduced model of the leech heart
interneuron. We show that, as the activation kinetics of the slow potassium current are shifted towards
depolarized membrane potential values, the bursting phase accommodates incrementally more spikes into
the train. This phenomenon is attested to be caused by the homoclinic bifurcations of a saddle periodic
orbit setting the threshold between the tonic spiking and quiescent phases of the bursting. The
fundamentals of the mechanism are revealed through the analysis of a family of the onto Poincaré return
mappings.
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Bursting is a manifestation of complex, multiple time
scale dynamics observed in various fields of science as
diverse as neuroscience, food chain echo systems, and
nonlinear optics [1]. Period adding, called spike adding
in the context of neuronal bursting, is a generic term
describing nonlinear phenomena observed also in distinct
applications, such as the van der Pol generator, bubble
formation, and piecewise linear endomorphisms, although
the underlying mechanisms are quite dissimilar [2,3].
Studies of the bursting require nonlocal bifurcation analy-
sis, which is based on the methods of Poincaré return
mappings. The Poincaré mappings have been employed
intensively in computational neuroscience [4], although a
disadvantage of the commonly used pointwise ones gen-
erated from time series is that they are sparse. In this Letter,
we propose a new algorithm for constructing a full family
of onto mappings. Unlike a pointwise one, an onto map-
ping allows us to determine unstable solutions that are the
primary organizing centers of complex dynamics of a
system.

The spike adding cascade analyzed in this Letter acts as
follows: As the bifurcation parameter shifts the half-
inactivation potential towards more depolarized values,
the number of spikes per burst grows incrementally with
no bound until bursting transforms into tonic spiking
(Fig. 1). Earlier, in Refs. [5–7] we discovered and analyzed
two novel mechanisms of transitions between tonic spiking
and bursting. Both describe the terminal phases of the
spike adding cascades. The mechanisms differ by distinct
homoclinic bifurcations of a saddle-node periodic orbit.
So, the first one is due to the blue sky catastrophe [8],
where new spikes emerge in a middle part of a burst. The
second one is characterized by the bistability of the coex-
istent tonic spiking and bursting attractors separated by a
threshold, which is the stable manifold of a saddle periodic
orbit. In this case, bursting gains new spikes at its very
beginning while approaching this threshold.

We study the spike adding cascade in the reduced oscil-
latory heart interneuron model [5,6,9]:

 

_V � �2�30m2
K2�V � 0:07� � 8�V � 0:046�

� 200f3��150; 0:0305; V�hNa�V � 0:045��;

_hNa � 24:69�f�500; 0:0333; V� � hNa�;

_mK2 � 4�f��83; 0:018� Vshift
K2 ; V� �mK2�;

(1)

where V is the membrane potential, hNa is inactivation of
the fast sodium current, and mK2 is activation of the
persistent potassium one lK2; a Boltzmann function
f�a; b; V� � 1=�1� ea�b�V�� describes kinetics of (in)acti-
vation of the currents. The bifurcation parameter Vshift

K2 is a
deviation from V1=2 � 0:018 V corresponding to the half-
activated potassium channel at f � 1=2. Dynamically,
variations of Vshift

K2 translate the slow nullcline _mK2 � 0 in
the V direction, thereby altering the activation of IK2. In
this study, Vshift

K2 varies within ��0:026; 0:0018� V; these
upper and lower values correspond to the hyperpolarized
quiescent and tonic spiking states of the neuron, respec-
tively. In between, the model exhibits multiple transforma-
tions of the bursting activity.

Because of the disparity of the time constants of the
phase variables, the fast-slow system paradigm is appli-
cable to system (1): Its first two equations form a fast
subsystem, while the last equation is the slow one. The
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FIG. 1 (color online). An incremental spike adding cascade
develops as the activation kinetics of the slow potassium current
is shifted towards more depolarized membrane potentials.
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dynamics of such a system are known [10] to be deter-
mined by and centered around attracting pieces of the slow
motion manifolds that constitute a skeleton of activity
patterns. These manifolds are formed by the limit sets,
such as equilibria and limit cycles, of the fast subsystem
where the slow variable becomes a parameter in the sin-
gular limit. A typical Hodgkin-Huxley model possesses a
pair of such manifolds [11]: quiescent and tonic spiking,
denoted byMeq andMlc, correspondingly. A solution of (1)
that repeatedly switches between the low, hyperpolarized
branch of Meq and the spiking manifold Mlc represents a
busting activity in the model. In this Letter and our pre-
vious works [5–7], we reveal these manifolds in the full
model (1) by employing the parameter continuation ap-
proach without the preceding slow-fast decomposition.
This is the novelty of our approach based on the parameter
dependence of solutions of the initial value problem.
Observe first that, by construction, the equilibrium state
of the full system is that of its fast subsystem. In the phase
space of (1), it is the intersection point of the 1D quiescent
manifold Meq with the 2D slow nullcline _mK2 � 0, as
shown in Figs. 2�a1�–�c1�. The position of the latter de-
pends on Vshift

K2 . Hence, as Vshift
K2 is varied, the equilibrium

state of (1) and, therefore, the slow nullcline move (verti-
cally) along, thereby tracing the desired manifold Meq.
Note that the Vshift

K2 -parameter continuation leaves Meq

intact. This approach is especially applicable to multiple
time scales systems where a similar continuation technique
reveals the manifolds.

Whenever the spiking manifold Mlc is transient for the
solutions of (1), such as the ones winding around it in
Figs. 2 and 4, the model exhibits bursting. Otherwise, (1)
has a spiking periodic orbit that has emerged on Mlc

through the saddle-node bifurcation, thereby terminating
the bursting activity [5,8], or both regimes may coexist as
in Refs. [6,7]. In our earlier works, we developed the
concept of the averaged nullclines specifically to locate
and study local bifurcations of such spiking periodic orbits.
Loosely speaking, one shall exist if the slow nullcline
_mK2 � 0 cuts across the spiking manifold Mlc. Its position

on Mlc is determined by that of the average slow nullcline,
which, in turn, is determined by the bifurcation parameter
Vshift

K2 . Therefore, in response to a change in the value of
Vshift

K2 , the periodic orbit slides along the manifold Mlc. The
parameter continuation of periodic orbit branches is a
reliable numerical routine based on the collocation method
or the boundary value problem, which are implemented in
software packages such as CONTENT [12] used in this study.
Thus, by following the orbit that represents the tonic
spiking, we can trace down the whole spiking manifold
and determine both its attracting and unstable segments. A
partial segment of the manifold corresponding to Vshift

K2

increasing from �0:026 mV (left end) through 0.0018 V,
whereMlc wraps aroundMeq, is shown in Figs. 2 and 4. The
number of complete revolutions of the solution of (1)
around Mlc is that of spikes per burst. We use this winding

number to classify the bursting activity. The evolution of
the bursting attractor corresponding to the waveforms in
Fig. 1 is shown in the left column in Fig. 2. One can notice
that its transformations occur on the aforementioned spik-
ing manifold Mlc. To determine what makes the bursting
attractor change its shape and stability, we construct nu-
merically a Vshift

K2 -parameter family of 1D Poincaré map-
pings taking an interval of membrane potentials onto itself.
This interval is comprised of the minimal values, denoted
by (V0), of the membrane potential on the found periodic
orbits foliating densely the spiking manifoldMlc. Then, for
some Vshift

K2 in question, we integrate numerically the out-
going solution of (1) starting from the initial conditions
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FIG. 2 (color online). Phase portraits (left column) and
Poincaré mappings (right column) corresponding to the wave-
forms in Figs. 1(a)–1(c) for Vshift

K2 � �0:012, �0:016, and
�0:021 V, respectively. (a) Unique minimum on the spiking
orbit of (1) is the stable fixed point of the Poincaré mapping. In
(b2) and (c2), this fixed point, now unstable (red dot), sets the
threshold between the quiescent and spiking sections of the
mapping graph. (b) Two V minima of the bursting orbit corre-
spond to the period-2 attractor of the mapping. The two points of
the latter are separated by the threshold, so that the left one
represents the minimum at the quiescent phase and the one to the
right corresponds to the minimum separating two spikes in the
burst trace. (c) Three V minima of the bursting orbit compose the
period-3 attractor of the mapping, consisting of one point cor-
responding to the quiescent phase while two points separate
three spikes within the burst.
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corresponding to each (V0) to find the consecutive mini-
mum (V1) in the voltage time series. All found pairs
�V0; V1� constitute the graph of the Poincaré mapping for
given Vshift

K2 . Such a mapping, shown in Fig. 2(a2) at Vshift
K2 �

�0:012 V, corresponds to the trace in Fig. 1(a). Its fixed
point is a single V minimum on the periodic orbit in
Fig. 2(a1). The stability of the orbit follows from the fact
that the fixed point resides on the flat quiescent section of
the mapping graph that is constituted by the stable equi-
libria on the hyperpolarized branch of Meq. Decreasing
Vshift

K2 below �0:0149 V results in (1) generating bursts
with two spikes [Fig. 1(b)]. The mapping shows that the
transition from tonic spiking into bursting occurs through
the flip bifurcation, giving rise to a new period-2 bursting
attractor. Further decreasing Vshift

K2 below �0:020 081 2 V
elevates the slow nullcline _mK2 � 0, thereby slowing down
the mK2 component of the bursting orbit of (1) on Meq so
that the neuron starts to generate bursts with three spikes
(Figs. 1 and 2). In the mapping, this is accompanied by the
quiescent section of the mapping graph lifting up, so that
the iterate of the bursting orbit, which follows its quiescent
phase, is brought up higher into the spiking section of the
mapping with more depolarized potentials. This increases
the number of the points comprising the bursting orbit of
the mapping and, correspondingly, makes the solution of
(1) linger longer around the manifold Mlc and, hence,
generate more spikes within the burst.

The whole spike adding sequence is documented in the
bifurcation diagram in Fig. 3. It yields the evolution of the
bursting orbits of the mappings and, therefore, of the V
minima of the bursting orbits of model (1) as Vshift

K2 is

varied. In Fig. 3, the number of the intersections of the
vertical lines labeled by (a)–(c) yields the spike number
per burst for the parameter values corresponding to Figs. 1
and 2. The diagram reveals also that spike adding transi-
tions occur within narrow parameter windows where the
system shows chaotic (or long transient) regimes (Fig. 4).

Chaos observed at a spike adding transition is due to the
emerging homoclinics to the repelling (threshold) fixed
point in the family of these noninvertible Poincaré map-
pings. Since its multiplier is negative, in the phase space of
model (1) the image of the point is a saddle periodic orbit
with 2D stable and unstable manifolds homeomorphic to a
Möbius band [8]. A first boundary of the transition window
corresponds to the occurrence of a primary homoclinic
orbit induced through the initial tangency of these mani-
folds [13]. Inside the window, the tangles of the manifolds
crossing transversally produce countably many Poincaré
homoclinic and saddle periodic orbits. As a result, the
system can generate burst trains with unpredictably alter-
nating spike numbers. Such a situation is depicted in the
transition window around the parameter cut H1, where the
neuron model exhibits bursts with two, three, and four
spikes. Figure 5 gives the distribution of the number of
spikes per burst as the Vshift

K2 is varied within this window.
Detection of homoclinics of a saddle periodic orbit in the

phase space of a model is the state of the art. We use the
Poincaré mapping technique to find the homoclinic orbits
in the phase space of the interneuron model (1) and the
corresponding parameter values indeed by following the
forward iterates of the critical point on the graph of the
corresponding mapping. The homoclinic tangency occurs
when a finite sequence of the forward iterates of the critical
point terminates at the repelling fixed point. Figure 4(d2)
shows a homoclinic orbit and chaos caused by it at the tran-
sition window between the robust bursts with 4–5 spikes.
Overall, we detected the first 17 such primary homoclinic
bifurcations (Fig. 6) which cause the spike adding transi-
tions. The transitions occur more often as Vshift

K2 decreases
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FIG. 3 (color online). Bifurcation diagram: stable and unstable
orbits of the Poincaré mapping are shown in black/purple and
red, respectively. The middle (red) branch of the diagram is the
threshold between quiescent and spiking phases of the bursting.
The fold point corresponds to the saddle-node bifurcation of
fixed points of the Poincaré mapping. Parameter values labeled
(a)–(c) are used in Figs. 1 and 2. Lines with H’s mark homoclinic
bifurcations and spike adding transitions.
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FIG. 4 (color online). Chaos in (1) and the mapping at the
transition from 4 to 5 intraspikes per burst at Vshift

K2 �
�0:021 853 027 343 75 V. Shown in red are the saddle periodic
orbit and the primary homoclinics to the threshold fixed point.
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towards�0:024 828 V, which corresponds to an arbitrarily
long homoclinic orbit (Fig. 6).

In conclusion, we discuss the details of the forthcoming
termination of the bursting activity in the interneuron
model. The use of the mappings makes the interpretation
of the scenario proposed in Ref. [6] particularly clear. The
diagram in Fig. 3 shows the fold point corresponding to a
saddle-node bifurcation at Vshift

K2 � �0:0265 V. To its left,
the mapping possesses a pair of new fixed points. The
stable one (its branch shown in purple) is the only V
minimum of the spiking periodic orbit that coexists now
with the bursting attractor. The basins of both attractors are
separated by the new unstable fixed point (upper red
branch). A further decrease of Vshift

K2 ceases the bistability,
when the basin of the bursting attractor collides with the
unstable point at Vshift

K2 � �0:024 828. The bursting’s basin

becomes fractal for smaller values of the parameter, so that
the bursting attractor is endowed with the Cantor set struc-
ture. The real cause of this crisis is the occurrence of a
primary homoclinic of the new fixed point [13] that, in
turn, establishes a heteroclinic connection between both
unstable ones. After that, the system demonstrates transi-
tive bursting for an indefinite time, prior to switching into
the dominating tonic spiking regime.
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FIG. 6 (color online). Logarithmic fit of the sequence of the
primary homoclinic bifurcation values accumulating to Vshift

K2 �
�0:024 828 V, plotted vs the ordinal number of the homoclinic
orbits.

 

FIG. 5 (color online). Distribution of the number of spikes per
burst through the transition window around Vshift

K2 ��0:02185 V.
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