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Using experiments and theory, we show that light scattering by inhomogeneities in the index of
refraction of a fluid can drive a large-scale flow. The experiment uses a near-critical, phase-separated
liquid, which experiences large fluctuations in its index of refraction. A laser beam traversing the liquid
produces a interface deformation on the scale of the experimental setup and can cause a liquid jet to form.
We demonstrate that the deformation is produced by a scattering-induced flow by obtaining good
agreements between the measured deformations and those calculated assuming this mechanism.
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A photon exchanges momentum with its surroundings.
Light-scattering techniques use this effect to probe the
structure of materials. Much of what we know about the
mesoscopic structures in colloidal suspensions, emulsions,
and near-critical fluids has been revealed by light scattering
[1–4]. More recently, many researchers have explored how
the intense light beam generated by a laser can accelerate
and trap micron-sized particles [5,6]. Applications range
from laser tweezers [7–9] to particle sorting in micro-
fluidic channels [10–12]. However, one consequence of
scattering has received little attention. Since a liquid flows
readily, the momentum transferred by light scattering in a
structured fluid can produce a flow along the light propa-
gation direction.

In this Letter, we examine one example of a structured
fluid, a phase-separated liquid near a second-order phase
transition, and show that a strong flow is produced by light
scattering off density fluctuations in the liquid. This flow is
measured indirectly via the deformations it produces on the
very soft, near-critical liquid interface.

Figure 1 shows the two different types of deformation
observed. When the laser shines downwards onto the inter-
face, so that the beam travels from the phase with the
higher refractive index to the phase with the lower refrac-
tive index, a long, thin jet of the upper-layer liquid forms
along the beam axis and intrudes deep into the lower fluid
[Fig. 1(a)] [13]. Sporadically, the end of the jet sheds
droplets. For modest laser powers, the shedding is regular
in time and allows us to measure the volume flux, which is
typically several tens of cubic microns per second. When
the laser shines upwards, the interface remains unbroken
even at high power. Instead, a downward tether forms on
the interface due to radiation pressure effects [14]. Away
from the center line, the interface also deflects upwards,
forming a hump whose lateral length scale is much larger
than the beam width [Fig. 1(b)].

Previous works have analyzed how the difference be-
tween the refractive indices of the two liquid phases results
in a radiation pressure which deforms the interface [13,15].

While this mechanism explains the beam-sized deforma-
tions, it cannot explain either the jet or the broad hump. In
this Letter, we show that these structures demonstrate the
presence of a bulk flow driven by light scattering. The key

 

FIG. 1. Interface deformations. (a) When the laser shines
downwards, the upper fluid (with the larger refractive index)
forms a jet intruding into the lower layer (�T � 6 K, !0 �
3:47 �m, and P � 490 mW). (b) When the laser shines up-
wards, the interface forms a downwards tether along the center
line and an upward, broad hump away from the center line
(�T � 1:5 K, !0 � 4:8 �m, and P as indicated). The arrows
show the direction of propagation of the laser.
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points of our argument are illustrated in Fig. 2. We begin
with the simpler question of how a broad hump is created
when the interface is illuminated from below. Light scat-
tering produces an upwards body force on the liquid within
the laser beam, driving an upwards flow within the lit
region. By conservation of fluid mass, this flow is replen-
ished by a downwards flow. In the experiment, and in most
situations of interest, inertial effects are negligible. Since
purely viscous flows minimize dissipation [16], the replen-
ishing flow takes the form of a single toroidal recirculation
whose size is set by the container. Viscous stresses asso-
ciated with the recirculation deform the interface upwards.
This creates a hump whose width is ultimately determined
by the size of the experimental setup and is therefore much
wider than the laser beam. In the rest of the Letter, we show
that the qualitative scenario described above can quantita-
tively account for the broad hump shapes measured. In
addition, we estimate the volume flux of flow driven by the
light in the jetting regime and find reasonable agreement
with the measured values.

The fluid used in the experiments is a water-in-oil mi-
cellar fluid at a critical composition. Above the critical
temperature Tc � 35 �C, the fluid separates into two im-
miscible phases with different micelle volume density �,
in a second-order phase transition [17]. Near the critical
temperature, many physical properties scale like power
laws in �T � T � Tc. For our purpose, the most important
scaling behavior is the divergence of the osmotic com-
pressibility, �T / �T�1:24. The fluid experiences fluctua-
tions in its order parameter, �, which act as light scatterers.
These fluctuations have a correlation length �� / �T�0:63,
which is typically hundreds of angstroms. The very weak
absorption of light at the laser frequency (�th �
3� 10�4 cm�1) ensures that laser heating is negligible.
The fluid is enclosed in a thermally controlled fused quartz
cell (2� 10� 40 mm3). Optical forcing is provided by a
linearly polarized TEM00 continuous Ar� laser, with a
vacuum wavelength of � � 5145 �A and a beam power
P< 2 W. The beam has a Gaussian profile with width
!0, varying from 3 to 15 �m. More details about the
experiment can be found in [15].

We can construct a simple argument for how u0, the
strength of the light-induced flow, depends on the light

intensity. The momentum per unit volume transferred from
the laser beam into the liquid via scattering is proportional
to the beam intensity I. Therefore the body force Fv is also
proportional to I. This body force acts as a pressure gra-
dient along the beam axis. Balancing Fv against viscous
resistance �u0=!2

0, where we use the beam width !0 as a
characteristic length scale of the light-induced flow, yields

 u0 / I!
2
0=� / P=�: (1)

This argument predicts, counterintuitively, that the flow
strength has no dependence on the beam intensity. It only
depends on the beam power. If this is true, then the inter-
face deformation created by the flow should also have no
dependence on the light intensity. Figure 3 shows two sets
of measured hump profiles. Each set is taken at a fixed
beam power, with the different profiles corresponding to
different beam sizes. Remarkably, consistent with the pre-
diction (1), the hump shape away from the center remains
the same for different beam widths when the power is held
constant. In contrast, the downward-pointing tether at the
center of the hump, previously shown to be created by
radiation pressure, varies with the beam width.

Next, we explicitly calculate the shape of the interface
deformation as a function of P and �T and compare the
calculated shapes with the measured shapes. This requires
us to first relate u0, which characterizes the strength of the
recirculation, to the laser power P, and then to relate the
shape deformation to u0.
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FIG. 3. Hump profiles for P � 592 mW (upper profiles) and
for 296 mW (lower profiles). !0 � 4:8 �m (black dots), 5.3,
6.3, 7.5, 8.9, 11.7, and 15:3 �m (lightest gray dots), and �T �
1:5 K for all profiles. Away from the beam axis, all of the
profiles fall onto the same shape, demonstrating that only the
laser power, and not the light intensity, affects the large-scale
hump shape.

 

FIG. 2. Toroidal recirculation produced in the lower layer
when the laser shines from below. The hump height is typically
around 10 �m, while the fluid layer is 1 mm thick. The dotted
box indicates the area seen in the photographs.
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To obtain u0�P	, we note that each scattering off a
density fluctuation transfers momentum to the fluid.
Summing the individual contributions from all fluctuations
in a unit volume gives the body force,

 Fv � D�TI; (2)

where D describes the interaction of the light with the
density fluctuations and is given by �3

�4
n
c �

�� @�
@�	

2
TkBT�

�4
83�
3 � 2�2 � 2�� �2�2 � 2�� 1	�

ln�1� 2�	�. Here, � � 2�2�n��=�	2 and n �
���
�
p

is the
index of refraction. This result comes from a calculation
analogous to the calculation of turbidity by Puglielli and
Ford [18] from the light-scattering theory of Ornstein and
Zernike [19]. Since the correlation length is shorter than
the wavelength of light in the regime examined, the fluc-
tuations act as Rayleigh scatterers. The calculation also
assumes single scattering, which is justified by the large
turbidity length. Combining this result with the balance
from (1), we see

 u0 � CFv!2
0=� � CD�TP=�; (3)

whereC is an undetermined numerical prefactor dependant
on the details of the coupling of the light-scattering force to
the large-scale flows. The velocity scale D�TP=� is
roughly tens of microns per second for experimental
conditions.

We next relate the flow within the region illuminated by
the laser beam to the large-scale recirculating flow respon-
sible for the broad hump. The liquid in the lower layer lies
within a cylindrical cell of radius r0 and depth L. Since the
laser beam width is much narrower than the width of the
recirculation, we represent the light-induced flow as simply
a point force along the center line of a cylindrical cell.
Also, as the interface deformations are much smaller than
the scale of the flow, we treat the interface between the
layers as perfectly flat. These simplifications allow us to
obtain an analytic solution for the bulk flow. In our model,
the single toroidal recirculation corresponds to an eigen-
function which satisfies no-slip boundary conditions on the
side walls of the container and free-stress boundary con-
ditions on the top and bottom surfaces of the container. The
size of the toroidal recirculation is set by the layer depth,
since that is the smallest length scale in the experimental
setup. The top and bottom boundary conditions are not
consistent with the experimental situation. However, the
error introduced primarily affects the absolute scale for the
strength of the recirculation, which controls the absolute
scale for the height of the interface deformation. It has little
effect on the relative shape of the deformation or how it
changes with the laser power P or the temperature T, which
are the aspects we focus on when we compare the calcu-
lation with the measurements. Figure 4 plots the vertical
velocity uz�r	 in the middle of the liquid layer. Note the
flow is upwards at small r and downwards at larger r,
consistent with the sketch in Fig. 2.

Finally, we relate the interface deformation h�r	 to the
viscous stresses �zz associated with the toroidal recircula-
tion, and therefore to the laser power P. Because the
capillary length scale goes to 0 near Tc, buoyancy is as
important as surface tension in resisting the deformation.
The steady-state interface h�r	 is therefore given by

 2	
�r	 ���gh�r	 � �zz � C
D�TP
L

g�r; r0=L	; (4)

where 
�r	 is the mean curvature of the interface. To dis-
play the various dependencies of �zz, we have rewritten it
in terms of a dimensional stress and two dimensionless
quantities, the constant C and the function g�r; r0=L	 de-
scribing the radial decay of the stress. The boundary con-
dition at the wall of cylindrical cell is h�r0	 � 0. Near the
center line, the interface develops a downward tether due to
radiation pressure. We account for this O�!0	 tether by
imposing the boundary condition dh=dr � 0 at r � !0,
which mimics the observed circular rim, created by radia-
tion effects which are not included here.

Numerical solutions of (4) at different laser powers are
displayed in Fig. 5, together with experimentally measured
interface profiles at the same laser powers. Values of the
material parameters and beam size used in the calculation
are taken from the experiment. The value of the unknown
constant C is fixed at 33 by requiring that the maximum
height of the calculated shape equals the measured shape at
P � 592 mW. This is the only fitting adjustment we have
made between the calculation and the measurement. The
agreement between the measured and the calculated inter-
face shapes is excellent. Comparisons at larger �T for a
range of powers produced good agreement as well,
although the smaller size of the hump at larger �T makes
detailed comparisons less precise. This behavior in �T
rules out thermocapillary flows, used to drive drop motion
in previous studies [20], which vanish close to the critical
point.

We next consider the liquid transport inside the jet.
While the complexity of the pattern of light propagation
at the interface prevents a detailed comparison between the
calculation and the measurements, it is possible to obtain a
rough estimate. Since the jet radius rj is observed to
increase weakly with the beam power and is always less
than the beam size !0, we assume simply that the power of
the light trapped inside the jet is 2P�r2

j=!
2
0	, a fraction of
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FIG. 4. Form of the vertical velocity uz at the midplane of the
fluid layer, from the flow model. The layer aspect ratio
(depth=radius � L=r0) is 1=5, consistent with the experiment.
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the incident beam power. Given the beam power inside the
jet and (3), the transport flux is

 Q � u0�r2
j � 2�C

D�TP
�

� r4
j

!2
0

�
: (5)

This estimate gives the right order of magnitude for the
volume flux. For example, an experiment with P �
473:6 mW at �T � 4 K and !0 � 5:08 �m yields a jet
with roughly 1 �m radius and measured volume flux of
110 �m3=s. The estimate (5) gives 310 �m3=s.

In conclusion, we have used a combination of experi-
ment and theory to demonstrate that light scattering can
produce a significant flow in a structured fluid. In the
experiment, we measure the large-scale interface deforma-
tion and the liquid transport produced by illumination of an
intense laser. We compare the measured deformations
against deformations calculated from a flow driven by light
scattering. The excellent agreements show clearly that
these deformations are created by a light-driven recirculat-
ing flow whose size is set by the experimental setup. We
emphasize that such light-induced flows exist whenever
fluids have mesoscopic spatial variation in the refractive
index and do not require the fluid to be near a second-order
phase transition. For example, a suspension of 100 nm-
diameter glass beads in water at 10% volume fraction
would experience a scattering force 5 times larger than is
seen in our experiment. While such an effect has been used
to transport individual colloidal particles whose size is

comparable with the beam width [21], the possibility of
transporting smaller colloidal particles collectively has not
been noted before and is worth further investigation.
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FIG. 5. The calculated (solid line) and experimental (dots)
hump profile for �T � 1:5 K, !0 � 4:8 �m. From bottom to
top, P � 88:8, 177.6, 296.0, 414.4, and 592.0 mW.
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