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Two-nucleon momentum distributions are calculated for the ground states of nuclei with mass number
A � 8, using variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and
three-nucleon potentials. The momentum distribution of np pairs is found to be much larger than that of
pp pairs for values of the relative momentum in the range �300–600� MeV=c and vanishing total mo-
mentum. This order of magnitude difference is seen in all nuclei considered and has a universal character
originating from the tensor components present in any realistic nucleon-nucleon potential. The correla-
tions induced by the tensor force strongly influence the structure of np pairs, which are predominantly in
deuteronlike states, while they are ineffective for pp pairs, which are mostly in 1S0 states. These features
should be easily observable in two-nucleon knockout processes, such as A�e; e0np� and A�e; e0pp�.
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The two preeminent features of the nucleon-nucleon
(NN) interaction are its short-range repulsion and inter-
mediate- to long-range tensor character. These induce
strong spatial-spin-isospin NN correlations, which leave
their imprint on the structure of ground- and excited-state
wave functions. Several nuclear properties reflect the pres-
ence of these features. For example, the two-nucleon den-
sity distributions �MS

TS �r� in states with pair spin S � 1 and
isospin T � 0 are very small at small internucleon separa-
tion r and exhibit strong anisotropies depending on the spin
projection MS [1]. Nucleon momentum distributions N�k�
[2,3] and spectral functions S�k; E� [4] have large high-
momentum and, in the case of S�k; E�, high-energy com-
ponents, which are produced by short-range and tensor
correlations. The latter also influence the distribution of
strength in response functions R�k;!�, which characterize
the response of the nucleus to a spin-isospin disturbance
injecting momentum k and energy! into the system [5,6].
Lastly, calculations of low-energy spectra in light nuclei
(up to mass number A � 10) have demonstrated that tensor
forces play a crucial role in reproducing the observed

ordering of the levels and, in particular, the observed
absence of stable A � 8 nuclei [7].

In the present study we show that tensor correlations also
impact strongly the momentum distributions of NN pairs
in the ground state of a nucleus and, in particular, that they
lead to large differences in the np versus pp distributions
at moderate values of the relative momentum in the pair.
These differences should be observable in two-nucleon
knockout processes, such as A�e; e0np� and A�e; e0pp�
reactions. This work goes beyond that of Ref. [7], which
did not address the momentum dependence of the ten-
sor force and induced correlations, by showing important
effects at relative momenta greater than 1:5 fm�1. These
effects, associated with small total and large relative
momenta in the NN pair, cannot be computed within the
vlow k framework [8] directly, but require the inclusion of
additional many-body, nonlocal, spin-isospin dependent
operators.

The probability of finding two nucleons with relative
momentum q and total momentum Q in isospin state TMT
in the ground state of a nucleus is proportional to the
density

 

�TMT
�q;Q� �

A�A� 1�

2�2J� 1�

X
MJ

Z
dr1dr2dr3 � � � drAdr01dr02 

y
JMJ
�r01; r

0
2; r3; . . . ; rA�e�iq��r12�r012�e�iQ��R12�R012�

� PTMT
�12� JMJ

�r1; r2; r3; . . . ; rA�; (1)

where r12 	 r1 � r2, R12 	 �r1 � r2�=2, and similarly for
r012 and R012. PTMT

�12� is the isospin projection operator,
and  JMJ

denotes the nuclear wave function in spin and
spin-projection state JMJ. The normalization is

 

Z dq
�2��3

dQ
�2��3

�TMT
�q;Q� � NTMT

; (2)

where NTMT
is the number of NN pairs in state TMT .

Obviously, integrating �TMT
�q;Q� over only Q gives the

probability of finding two nucleons with relative momen-
tum q, regardless of their pair momentum Q (and vice
versa).

The present study of two-nucleon momentum distribu-
tions in light nuclei (up to A � 8) is based on variational
Monte Carlo (VMC) wave functions, derived from a real-
istic Hamiltonian consisting of the Argonne v18 two-
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nucleon [9] and Urbana-IX three-nucleon [10] interactions
(AV18=UIX). The high accuracy of the VMC wave func-
tions is well documented (see Refs. [11,12] and references
therein), as is the quality of the AV18=UIX Hamiltonian in
quantitatively accounting for a wide variety of light nu-
clei properties, such as elastic and inelastic electromag-
netic form factors [13], and low-energy capture re-
actions [14]. However, it is important to stress that the
large effect of tensor correlations on two-nucleon mo-
mentum distributions and the resulting isospin depen-
dence of the latter remain valid, even if one uses a semi-

realistic Hamiltonian model. This will be shown explicitly
below.

The double Fourier transform in Eq. (1) is computed by
Monte Carlo (MC) integration. A standard Metropolis
walk, guided by j JMJ

�r1; r2; r3; . . . ; rA�j2, is used to sam-
ple configurations [12]. For each configuration a two-
dimensional grid of Gauss-Legendre points, xi and Xj, is
used to compute the Fourier transform. Instead of just
moving the  0 position (r012 and R012) away from a fixed
 position (r12 and R12), both positions are moved sym-
metrically away from r12 and R12, so Eq. (1) becomes

 �TMT
�q;Q� �

A�A� 1�

2�2J� 1�

X
MJ

Z
dr1dr2dr3 � � � drAdxdX yJMJ

�r12 � x=2;R12

�X=2; r3; . . . ; rA�e�iq�xe�iQ�XPTMT
�12� JMJ

�r12 � x=2;R12 �X=2; r3; . . . ; rA�: (3)

Here the polar angles of the x and X grids are also sampled
by MC integration, with one sample per pair. This proce-
dure is similar to that adopted most recently in studies of
the 3He�e; e0p�d and 4He� ~e; e0 ~p�3H reactions [15] and has
the advantage of very substantially reducing the statistical
errors originating from the rapidly oscillating nature of the
integrand for large values of q and Q. Indeed, earlier
calculations of nucleon and cluster momentum distribu-
tions in few-nucleon systems, which were carried out by
direct MC integration over all coordinates, were very noisy
for momenta beyond 2 fm�1, even when the random walk
consisted of a very large number of configurations [2].

The present method is, however, computationally inten-
sive, because complete Gaussian integrations have to be
performed for each of the configurations sampled in the
random walk. The large range of values of x and X required
to obtain converged results, especially for 3He, require
fairly large numbers of points; we used grids of up to 96
and 80 points for x and X, respectively. We also sum over
all pairs instead of just pair 12.

The np and pp momentum distributions in 3He, 4He,
6Li, and 8Be nuclei are shown in Fig. 1 as functions of the
relative momentum q at fixed total pair momentum Q � 0,
corresponding to nucleons moving back to back. The sta-
tistical errors due to the Monte Carlo integration are dis-
played only for the pp pairs; they are negligibly small for
the np pairs. The striking features seen in all cases are
(i) the momentum distribution of np pairs is much larger
than that of pp pairs for relative momenta in the range
1:5–3:0 fm�1, and (ii) for the helium and lithium isotopes
the node in the pp momentum distribution is absent in the
np one, which instead exhibits a change of slope at a
characteristic value of p ’ 1:5 fm�1. The nodal structure
is much less prominent in 8Be. At small values of q the
ratios of np to pp momentum distributions are closer to
those of np to pp pair numbers, which in 3He, 4He, 6Li,
and 8Be are, respectively, 2, 4, 3, and 8=3. Note that the np
momentum distribution is given by the linear combination

�TMT�10 � �TMT�00, while the pp momentum distribution
corresponds to �TMT�11. The wave functions utilized in the
present study are eigenstates of total isospin (1=2 for 3He,
and 0 for 4He, 6Li, and 8Be), so the small effects of isospin-
symmetry-breaking interactions are ignored. As a result, in
4He, 6Li, and 8Be the �TMT

is independent of the isospin
projection and, in particular, the pp and T � 1 np mo-
mentum distributions are the same.

The excess strength in the np momentum distribution is
due to the strong correlations induced by tensor compo-
nents in the underlying NN potential. For Q � 0, the pair
and residual (A� 2) system are in a relative Swave. In 3He
and 4He with uncorrelated wave functions, 3=4 of the np
pairs are in deuteronlike T; S � 0; 1 states, while the pp,
nn, and remaining 1=4 of np pairs are in T; S � 1; 0
(quasibound) states. When multibody tensor correlations
are taken into account, 10%–15% of the T; S � 1; 0 pairs
are spin flipped to T; S � 1; 1 pairs, but the number of
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FIG. 1 (color online). The np (lines) and pp (symbols) mo-
mentum distributions in various nuclei as functions of the
relative momentum q at vanishing total pair momentum Q.
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T; S � 0; 1 pairs hardly changes [1]. In A> 4 nuclei, some
np and pp pairs will be in relative P waves (T, S � 1, 1,
and 0,0) when one particle is in the s shell and one in the p
shell. Nevertheless, 5.5 out of 9 np pairs in 6Li (9 out of 16
in 8Be) are expected to be deuteronlike, while half the pp
pairs will be in T; S � 1; 0 states and half in T; S � 1; 1
states [16]. The tensor force vanishes in the former and is
weak in the latter.

These expectations are born out by our calculations, as
Fig. 1 clearly demonstrates. The np momentum distribu-
tions for q values larger than 1:5 fm�1 only differ by a
scaling factor, and indeed all scale relative to the deuteron
momentum distribution as shown in Fig. 2. The deuteron
�np�q;Q � 0� has been scaled to match that of 4He at q �
1:5 fm�1. (The scaling property does not extend to the low
q region, because there binding effects take over.) The S-
and D-wave components of the deuteron density are also
shown in the figure as dotted lines; the D-state component
is the dominant part over the range 1:4–4:0 fm�1, while the
S-state component has a node at 2:1 fm�1.

Similar considerations in relation to scaling and binding
effects also remain valid when considering the ppmomen-
tum distributions. In particular, the node seen in helium
and lithium is reminiscent of the node in the S-wave
momentum distribution (shown in Fig. 2). In larger nuclei
the node is filled in, due to the fact that pp pairs are not
exclusively in quasibound states, but can also be in P-wave
or higher partial-wave states.

Figure 2 also shows the np and pp momentum distri-
butions in 4He obtained with Hamiltonians of decreasing
sophistication, ranging from the fully realistic AV18=UIX
model to the semirealistic Argonne v06 (AV60) to the rela-
tively simple Argonne v04 (AV40). The AV40 and AV60

potentials are constructed to preserve as many features of

NN scattering and deuteron properties as feasible [7]. The
AV40 has only central, spin, and isospin operators with no
tensor component: it reproduces the 1S0 phase shift, and
the deuteron binding energy but with only an S-state
component; the D state, induced by the tensor term in the
potential and associated with one-pion exchange at long
range, is absent. On the other hand, the AV60 includes
tensor terms and produces a bound deuteron quite close
to that of AV18. These features of the underlying NN
potential, or the lack of them, are reflected in the calculated
momentum distributions. In particular, note the node which
develops in the AV40 np momentum distribution, due to
the purely S-wave nature of the deuteronlike state. On the
other hand, the AV60 and AV18=UIX results are very close
to each other, demonstrating the essential role played by
the tensor potential in substantially increasing the
intermediate-momentum components of np pairs.

The momentum distributions �NN�q� and �NN�Q� ob-
tained by integrating over Q or q, respectively, are plotted
in Fig. 3 for 4He with the AV18=UIX Hamiltonian. There
is no node in �pp�q�: it is filled in by the contributions of
pp channels other than 1S0. These channels are now al-
lowed, because the orbital angular momentum between the
pp pair and the residual nn cluster is not constrained to
vanish for Q> 0. A remnant of the strong tensor correla-
tions affecting �np�q� still persists. This is illustrated in the
inset of Fig. 3, which shows the ratio �np�q�=�pp�q�.
However, the effect is far less dramatic than in the back-
to-back (Q � 0) kinematics. Note that �NN�q� and �NN�Q�
have the same normalization, i.e., �A� Z�Z for np and
Z�Z� 1�=2 for pp. The �np�Q�=�pp�Q� ratio is close to
the np to pp pair number ratio—four in 4He—over the
whole range of Q values. This holds true for all the nuclei
studied.

The most direct evidence for tensor correlations in nu-
clei comes from measurements of the deuteron structure
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FIG. 2 (color online). The np (lines) and pp (symbols) mo-
mentum distributions in 4He obtained with different
Hamiltonians. Also shown is the scaled momentum distribution
for the AV18 deuteron; its separate S- and D-wave components
are shown by dotted lines.
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functions and tensor polarization by elastic electron scat-
tering [17]. In essence, these measurements have mapped
out the Fourier transforms of the charge densities of the
deuteron in states with spin projections
1 and 0, showing
that they are very different. In other processes, such as
2H�d; ��4He [18] at very low energy, or proton knockout
from a polarized deuteron [19] (as well as in the nuclear
properties mentioned at the beginning of this Letter), the
effects of tensor correlations are more subtle and their
presence is not easily isolated in the experimental data.
This is because of ‘‘contaminations’’ from initial or final
state interactions and many-body terms in the transition
operators.

Some of these corrections will also pollute the cross
sections for (e; e0np) and (e; e0pp), or (p; pp) and
(p; ppn), knockout processes in back-to-back kinematics.
However, one would expect the contributions due to final
state interactions in the np and pp reactions, both between
the nucleons in the pair and between these and the nucleons
in the residual (A� 2) system, to be of similar magnitude
for relative momenta in the range �300–600� MeV=c. In
the electrodisintegration processes, the leading electro-
magnetic two-body currents associated with pion and
�-meson exchange, denoted, respectively, as PS and V in
Ref. [20], vanish in pp because of their isospin structure.
Of course, they will contribute in np, but are not expected
to produce large effects. Thus the np cross section should
be at least an order of magnitude larger than the pp for
relative momenta within �300–600� MeV=c, reflecting
the large difference between the corresponding momen-
tum distributions in this range. There are strong indica-
tions from a recent analysis of a Brookhaven National
Laboratory experiment, which measured cross sections
for (p; pp) and (p; ppn) processes on 12C in kine-
matics close to 2 nucleons being ejected back to back,
that this is indeed the case [21]. The ratio of (p; ppn) to
(p; pp) events over the range of relative momenta
�275–550� MeV=c is found to be roughly 20, albeit with
a rather large error. Hopefully, a more precise value for this
ratio will become available in the near future, when the
analysis of 12C�e; e0np� and 12C�e; e0pp� data, taken at
Jefferson Laboratory, is completed [22].

It would be interesting to extend these measurements to
other nuclei. In 3He and 4He, one would expect the node in
the ppmomentum distribution to be filled in by interaction
effects in the final state [15]. However, the ratio of np to
pp cross sections in the range �300–600� MeV=c should
still reflect the large value of the np momentum distribu-
tion at these values of relative momenta. This would pro-

vide a further, direct verification of the crucial role that the
tensor force plays in shaping the short-range structure of
nuclei.
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