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In two remarkable recent papers the planar perturbative expansion was proposed for the universal
function of the coupling appearing in the dimensions of high-spin operators of the N � 4 super Yang-
Mills theory. We study numerically the integral equation derived by Beisert, Eden, and Staudacher, which
resums the perturbative series. In a confirmation of the anti–de Sitter-space/conformal-field-theory (AdS/
CFT) correspondence, we find a smooth function whose two leading terms at strong coupling match the
results obtained for the semiclassical folded string spinning in AdS5. We also make a numerical prediction
for the third term in the strong coupling series.
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Introduction.—The dimensions of high-spin operators
are important observables in gauge theories. It is well
known that the anomalous dimension of a twist-2 operator
grows logarithmically for large spin S,

 �� S � f�g� lnS�O�S0�; g �

�������������
g2

YMN
q

4�
: (1)

This effect is important for the physics of QCD; it deter-
mines the behavior of parton distribution functions as the
Bjorken-x parameter approaches 1 [1]. The logarithmic
growth of �� S was demonstrated early on at 1-loop order
[1] and at 2 loops [2] where a cancellation of ln3S terms
occurs. There are solid arguments that (1) holds to all
orders in perturbation theory [3,4], and that it also applies
to high-spin operators of twist greater than two [5]. The
universal function of coupling f�g� also measures the
anomalous dimension of a cusp in a lightlike Wilson
loop, and is of definite physical interest in QCD.

There has been significant interest in determining f�g�
in the N � 4 super Yang-Mills (SYM) theory. This is
partly due to the fact that the anti–de Sitter-space/confor-
mal-field-theory (AdS/CFT) correspondence [6] relates the
dimensions of operators in this gauge theory to energies of
corresponding objects in type IIB string theory on AdS5 �
S5. The object dual to a high-spin twist-2 operator is a
folded straight string spinning around the center of AdS5

space [7]. For large g the dual AdS5 � S5 background
becomes weakly curved, and semiclassical calculations
of the spinning string energy become reliable. This gives
the prediction that f�g� ! 4g at strong coupling [7]. The
same result was obtained from studying the cusp anomaly
using string theory methods [8]. Furthermore, the semi-
classical expansion for the spinning string energy predicts
the following correction [9]:

 f�g� � 4g�
3 ln2

�
�O�1=g�: (2)

It is of obvious interest to confirm these explicit predictions
of string theory using extrapolation of the perturbative
expansion for f�g� provided by the gauge theory.

Explicit perturbative calculations are quite formidable,
and until recently were available only up to 3-loop order
[10,11]:

 f�g� � 8g2 �
8

3
�2g4 �

88

45
�4g6 �O�g8�: (3)

Kotikov, Lipatov, Onishchenko, and Velizhanin (KLOV)
[10] extracted the N � 4 answer from the QCD calcula-
tion of [12] using their proposed transcendentality princi-
ple stating that each expansion coefficient has terms of the
same degree of transcendentality.

Recently, the methods of integrability in AdS/CFT (For
earlier work on integrability in gauge theories, see [13–
15].) [16], prompted in part by [7,17], have led to dramatic
progress in studying the weak coupling expansion. In the
beautiful paper by Beisert, Eden, and Staudacher [21],
which followed closely the important earlier work in
[18,19], an integral equation that determines f�g� was
proposed, yielding an expansion of f�g� to an arbitrary
desired order. The expansion coefficients obey the KLOV
transcendentality principle. In an independent remarkable
paper by Bern, Czakon, Dixon, Kosower, and Smirnov
[20], an explicit calculation led to a value of the 4-loop
term,

 � 16
�

73

630
�6 � 4��3�2

�
g8; (4)

which agrees with the idea advanced in [20,21] that the
exact expansion of f�g� is related to that found in [18]
simply by multiplying each �-function of an odd argument
by an i, ��2n� 1� ! i��2n� 1�. The integral equation of
[21] generates precisely this perturbative expansion for
f�g�.
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A crucial property of the integral equation proposed in
[21] is that it is related through integrability to the ‘‘dress-
ing phase’’ in the magnon S-matrix, whose general form
was deduced in [22,23]. In [21] a perturbative expansion of
the phase was given, which starts at the 4-loop order, and at
strong coupling coincides with the earlier results from
string theory [19,22,24–26]. An important requirement
of crossing symmetry [27] is satisfied by this phase, and
it also satisfies the KLOV transcendentality priciple.
Therefore, this phase is very likely to describe the exact
magnon S-matrix at any coupling [21], which constitutes
remarkable progress in the understanding of the N � 4
SYM theory, and of the AdS/CFT correspondence.

The papers [20,21] thoroughly studied the perturbative
expansion of f�g� which follows from the integral equa-
tion. Although the expansion has a finite radius of con-
vergence, as is customary in certain planar theories (see,
for example, [28]), it is expected to determine the function
completely. Solving the integral equation of [21] is an
efficient tool for attacking this problem. In this Letter we
solve the integral equation numerically at intermediate
coupling, and show that f�g� is a smooth function that
approaches the asymptotic form (2) predicted by string
theory for g > 1. The two leading strong coupling terms
match those in (2) with high accuracy. This constitutes a
remarkable confirmation of the AdS/CFT correspondence
for this nonsupersymmetric observable.

Numerical study of the integral equation.—The cusp
anomalous dimension f�g� can be written as [21,18,29]

 f�g� � 16g2�̂�0�; (5)

where �̂�t� obeys a certain integral equation. In terms of
the function s�t� � et�1

t �̂�t� the integral equation is

 s�t� � K�2gt; 0� � 4g2
Z 1

0
dt0K�2gt; 2gt0�

t0

et
0
� 1

s�t0�;

(6)

with the kernel given by [21]

 K�t; t0� � K�m��t; t0� � 2K�c��t; t0�: (7)

The main scattering kernel K�m� of [18] is

 K�m��t; t0� �
J1�t�J0�t0� � J0�t�J1�t0�

t� t0
; (8)

and the dressing kernel K�c� is defined as the convolution

 K�c��t; t0� � 4g2
Z 1

0
dt00K1�t; 2gt

00�
t00

et
00
� 1

K0�2gt
00; t0�;

(9)

where K0 and K1 denote the parts of the kernel that are
even and odd, respectively, under change of sign of t and t0:

 K0�t; t
0� �

tJ1�t�J0�t0� � t0J0�t�J1�t0�

t2 � t02

�
2

tt0
X1
n�1

�2n� 1�J2n�1�t�J2n�1�t
0�; (10)

 K1�t; t0� �
t0J1�t�J0�t

0� � tJ0�t�J1�t
0�

t2 � t02

�
2

tt0
X1
n�1

�2n�J2n�t�J2n�t0�: (11)

Both K�m� and K�c� can conveniently be expanded as
sums of products of functions of t and functions of t0:

 K�m��t; t0� � K0�t; t0� � K1�t; t0� �
2

tt0
X1
n�1

nJn�t�Jn�t0�;

(12)

and

 K�c��t; t0� �
X1
n�1

X1
m�1

8n�2m� 1�

tt0
Z2n;2m�1J2n�t�J2m�1�t0�:

(13)

This suggests writing the solution in terms of linearly
independent functions as

 s�t� �
X
n�1

sn
Jn�2gt�

2gt
; (14)

so that the integral equation becomes a matrix equation for
the coefficients sn. The desired function f�g� is now
f�g� � 8g2s1.

It is convenient to define the matrix Zmn as

 Zmn �
Z 1

0
dt
Jm�2gt�Jn�2gt�
t�et � 1�

: (15)

Using the representations (12) and (13) of the kernels and
(14) for s�t�, the integral equation above is now of the
schematic form

 sn � hn �
X
m�1

�K�m�nm � 2K�c�nm�sm; (16)

whose solution is

 s �
1

1� K�m� � 2K�c�
h: (17)

The matrices are

 K�m�nm � 2�NZ�nm; (18)

 K�c�nm � 2�CZ�nm; (19)

 Cnm � 2�PNZQN�nm; (20)

where Q � diag�1; 0; 1; 0; . . .�, P � diag�0; 1; 0; 1; . . .�,
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N � diag�1; 2; 3; . . .�, and the vector h can be written as
h � �1� 2C�eT, where e � �1; 0; 0; . . .�. The crucial point
for the numerics to work is that the matrix elements of Z
decay sufficiently fast with increasingm, n (they decay like
e�max�m;n�=g). For intermediate g (say g < 20) we can work
with moderate size d by d matrices, where d does not have
to be much larger than g. The integrals in Znm can be
obtained numerically without much effort and so we can
solve for the sn. We find that the results are stable with
respect to increasing d.

Even though at strong coupling all elements of Znm are
of the same order in 1=g, those far from the upper left
corner are numerically small. This last fact makes the
numerics surprisingly convergent even at large g and,
moreover, gives some hope that the analytic form of the
strong coupling expansion of f�g� could be obtained from
a perturbation theory for the matrix equation.

Therefore, when formulated in terms of the Zmn, the
problem becomes amenable to numerical study at all val-
ues of the coupling. We find that the numerical procedure
converges rather rapidly, and truncates the series expan-
sions of s�t� and of the kernel after the first 30 orders of
Bessel functions.

The function f�g� is the lowest curve plotted in Fig. 1.
For comparison, we also plot fm�g� which solves the
integral equation with kernel K�m� [18], and f0�g� which
solves the integral equation with kernel K�m� � K�c�.
Clearly, these functions differ at strong coupling. The
function f�g� is monotonic and reaches the asymptotic,
linear form quite early, for g ’ 1. We can then study the
asymptotic, large g form easily and compare it with the
prediction from string theory. The best fit result (using the
range 2< g< 20) is

 f�g� � �4:000 000	 0:000 001�g� �0:661 907

	 0:000 002� �
0:0232	 0:0001

g
� . . . : (21)

The first two terms are in remarkable agreement with the
string theory result (2), while the third term is a numerical
prediction for the 1=g term in the strong coupling expan-
sion. The coefficients in (21) are obtained by fitting our
results to a polynomial in 1=g with 5 parameters. The error
in the second (third) term is estimated by fitting the nu-
merical data after the first (respectively, first and second)
coefficients have been fixed to their string theoretic values
(2). If one does not fix any coefficient the error in the third
term is somewhat larger (4% rather than 0.5%) while the
error in the second is still negligible. The value 0:0232	
0:0001 for the 1=g term is obtained by fitting the data after
fixing the first two terms to their string theoretic values (2).
The 3-parameter fit gives the same central value but with a
bigger error (4% instead of 0.5%)], which may perhaps be
checked one day against a two-loop string theory calcu-
lation. It is worth mentioning that we obtain a very good fit
to the numerical results without introducing any anoma-
lous terms like logg=g.

We do not need to restrict the numerical analysis to real
values of g; complex values of g are of interest as well. In
[21] it was argued that the dressing phase has singularities
at g 
 	in=4, for n � 1; 2; 3; . . . . Also, their analysis of
the small g series shows that there are square-root branch
points in f�g� at g � 	i=4. Perhaps, this is related to the
cuts in the giant-magnon dispersion relations [26,30–33],
for momenta close to �. Our numerical results indeed
indicate branch points at g 
 	i=4, 	i=2 with exponent
1=2. Beyond that we observe oscillations of both the real
and imaginary parts of f�g� for nearly imaginary g. Further
work is needed to elucidate the analytical structure of f�g�.

Discussion.—A very satisfying result of this Letter is
that the Beisert, Eden, and Staudacher (BES) integral
equation yields a smooth universal function f�g� whose
strong coupling expansion is in excellent numerical agree-
ment with the spinning string predictions of [7,9]. This
provides a highly nontrivial confirmation of the AdS/CFT
correspondence.

The agreement of this strong coupling expansion was
anticipated in [21] based on a similar agreement of the
dressing phase. However, some concerns about this argu-
ment were raised in [20] based on the slow convergence of
the numerical extrapolations. Luckily, our numerical meth-
ods employed in solving the integral equation converge
rapidly and produce a smooth function that approaches the
asymptotics (2). The crossover region of f�g� where it
changes from the perturbative to the linear behavior lies
right around the radius of convergence, gc � 1=4, corre-
sponding to g2

YMN � �2. For N � 3, this would corre-
spond to �s � 0:25.

 

FIG. 1 (color online). Plot of the solutions of the integral
equations: fm�g� for the Eden and Staudacher kernel [18] K�m�

(upper curve, red), f0�g� for the kernel K�m� � K�c� (middle
curve, green), and f�g� for the BES kernel K�m� � 2K�c� (lower
curve, blue). Notice the different asymptotic behaviors. The inset
shows the three functions in the crossover region 0< g< 1.
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The qualitative structure of the interpolating function
f�g� is quite similar to that involved in the circular Wilson
loop, where the conjectured exact result [34,35] is
ln�I1�4�g�2�g �. The above function is analytic on the complex
plane, with a series of branch cuts along the imaginary
axis, and an essential singularity at infinity. The function
f�g� is also expected to have an infinite number of branch
cuts along the imaginary axis, and an essential singularity
at infinity [21]. We found numerically the presence, in
f�g�, of the first two branch cuts on the imaginary axis,
starting at g � 	 ni

4 , n � 1, 2. The first of them, which also
occurs for the giant magnon with maximal momentum p �
�, agrees with the summation of the perturbative series
[21].

It is remarkable that the integral equation of [21] allows
f�g�, which is not an observable protected by supersym-
metry, to be solved for. Hopefully, this paves the way to
finding other observables as functions of the coupling in
the planar N � 4 SYM theory.

We thank J. Maldacena, M. Staudacher, and A. Tseytlin
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by the National Science Foundation under Grant No. PHY-
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