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All f�R� modified gravity theories are conformally identical to models of quintessence in which matter
is coupled to dark energy with a strong coupling. This coupling induces a cosmological evolution radically
different from standard cosmology. We find that, in all f�R� theories where a power of R is dominant at
large or small R (which include most of those proposed so far in the literature), the scale factor during the
matter phase grows as t1=2 instead of the standard law t2=3. This behavior is grossly inconsistent with
cosmological observations (e.g., Wilkinson Microwave Anisotropy Probe), thereby ruling out these
models even if they pass the supernovae test and can escape the local gravity constraints.
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The late-time accelerated cosmic expansion is a major
challenge to cosmology [1]. It can be due to an exotic
component with sufficiently negative pressure, dark energy
(DE), or, alternatively, to a modification of gravity, no
longer described by general relativity. Examples of such
modified gravity DE models are theories where the Ricci
scalar R in the Lagrangian is replaced by some function
f�R�, e.g., inverse powers R�n [2,3]. Although these mod-
els exhibit a natural acceleration mechanism, criticisms
emphasized their inability to pass solar system constraints
[4]. Indeed, f�R� theories correspond to scalar-tensor grav-
ity with a vanishing Brans-Dicke parameter !BD [5].
However, one could, in principle, build models with a
very short interaction range (e.g., adding a R2 term [6,7])
or assume decoupling of the baryons from modified grav-
ity. Since these models could pass local gravity constraints,
it is important to assess their cosmological viability: This is
the aim of this Letter. We will consider models of the form
f�R� � R��2�n�1�=Rn for all �; n in which df=dR > 0
for all R. In these models, the scale factor a�t� expands as
t1=2 instead of the conventional t2=3 behavior during the
matter phase that precedes the final accelerated stage (in
contrast with inflationary models such as Starobinsky’s R2

one [8]). This would lead to inconsistencies with the
observed distance to the cosmic microwave background
(CMB), the large scale structure (LSS) formation, and the
age of the Universe. This crucial fact appears to have been
overlooked so far.

Consider the general action in the Jordan frame (JF)

 S �
Z
d4x

�������
�g
p

�
1

2�2 f�R� �Lm

�
; (1)

where �2 � 8�G (G is the gravitational constant). For a
flat Friedmann-Robertson-Walker metric, the equations are
given by
 

3FH2 � �RF� f�=2� 3H _F� �2�m;

2F _H � � �F�H _F� �2��m � pm�;
(2)

where F � @f=@R,H � _a=a, and �m and pm represent the
energy density and the pressure of a perfect fluid, respec-
tively, obeying the standard conservation equation. These
equations coincide with a scalar-tensor Brans-Dicke theory
with a potential and vanishing !BD [9,10].

Under the conformal transformation ~g�� � e2!g��,
2! � logF, one obtains the Einstein frame (EF) action:

 SE�
Z
d4x

�������
�~g

p �
R�~g�

2�2 �
1

2
�~r��2�V���� ~Lm���

�
; (3)

where � �
���
6
p
!=� and V � sgn�F��RF� f�=2�2F2 (all

tilded quantities are in the EF). The conformal transforma-
tion is singular for F � 0 and trivial for F � const, so we
will consider only positive-definite nonconstant forms of
F. Quantities in the two frames are related as follows:

 ~�m��me
�4!; ~pm�pme

�4!; d~t�e!dt; ~a� e!a:

(4)

Although we will work mainly in the EF, we checked all
numerical and analytical results directly in the JF as well.
In the EF, the field � and the fluid satisfy the standard
gravitational and conservation equations:

 

��� 3 ~H _��V;� �
��������
2=3

p
���~�m � 3~pm�; (5)

 

_~�m � 3 ~H�~�m � ~pm� � �
��������
2=3

p
�� _��~�m � 3~pm�; (6)

where the coupling � is given by

 � � 1=2; (7)
regardless of the form of f�R�. Then the strength of the
coupling between the field and the fluid is uniquely deter-
mined in all f�R� gravity theories. A dimensionless
strength of order unity means that matter feels an addi-
tional scalar force as strong as gravity itself. Note that � is
related to !BD via the relation � � �3=4�2!BD � 3��1=2.
The dynamics of the system depends upon the form of the
potential V���, i.e., the choice of f�R�. For theories in
which f�R� � ��2�n�1�R�n (n � �1, 0, and negative n
are also included), the potential in EF is a pure exponential
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 V��� � A exp������; (8)

where � � �
���
6
p
=3� n�2

n�1 and A � �2�n� 1�=
2�2njnj1=�n�1�. The condition F > 0 implies A> 0 except
for �1< n< 0: In this case, since the potential becomes
negative, we analyze directly the JF. In the EF, the R�n

model corresponds to a coupled DE scenario studied in
Refs. [11,12] with the coupling (7). We first discuss the
main properties of this exponential potential and then
extend them to the general case.

As shown in Ref. [12] for all values of n outside ��1; 0�,
the system has one and only one global attractor solution, a
scalar-field-dominated solution with an energy fraction
~�� � 1. This solution appears when the potential term
in Eq. (5) dominates over the coupling term on the right-
hand side and is, therefore, independent of the coupling.
On this attractor, the scale factor evolves as ~a	
~t2=�3�1� ~weff ��, where the effective equation of state (EOS)
is ~weff ��1��2=3��1��2�2�n�2=9�1� n�2�. This
can be identified with the acceleration today if �	H0.

Besides the final attractor, a coupled field with an ex-
ponential potential has also another solution in which
matter and field scale in the same way with time, and,
consequently, their density fractions are constants. This
epoch has been denoted as the �-matter-dominated era
(�MDE) [11]. As we will show in a moment, the �MDE
plays a central role in this work. This epoch occurs just
after the radiation era and replaces the usual MDE. During
the �MDE, the energy fraction ~�� and the effective EOS
~weff are constant and given by [11,12] ~�� � ~weff �

4�2=9. Then we have ~�� � ~weff � 1=9 in f�R� modified
gravity theories. Therefore, contrary to standard cosmol-
ogy, in coupled models, DE is not negligible in the past
(until the radiation era). In contrast to the accelerated
attractor, the �MDE occurs when the coupling term in
the right-hand side of Eq. (5) dominates over the potential
term, as it can be explicitly shown. This aspect is crucial
for the present work, since it implies that the �MDE exists
independently of the form of f�R�. In this regime, the scale
factor behaves as ~a	 ~t3=5. In the JF, this becomes a	 t1=2

instead of the usual t2=3 behavior of the MDE. This is
clearly a strong deviation from standard cosmology and
is ruled out by observations, as illustrated below. Notice
that the JF evolution in this phase corresponds to R � 0 as
during the radiation epoch, but, just as in that case, there is
no singularity in an inverse power-law theory because this
behavior is not exact (see below). In the language of
dynamical systems, the �MDE is a saddle point.

To analyze the full system (including the radiation en-
ergy density �rad, which obeys the standard conservation
equation), we introduce the following quantities:

 x1 �
��0���

6
p ; x2 �

�
~H

����
V
3

s
; x3 �

�
~H

��������
�rad

3

r
; (9)

where a prime denotes the derivative with respect to N �

log�~a�. The energy fractions of the field� and of matter are
given by ~�� � x2

1 � x
2
2 and ~�m � 1� x2

1 � x
2
2 � x

2
3, re-

spectively. The effective EOS and the field EOS are ~weff �
x2

1 � x
2
2 � x

2
3=3 and ~w� � �x2

1 � x
2
2�=�x

2
1 � x

2
2�, respec-

tively. The complete system has been already studied in
Ref. [11], and we will not repeat it here. The �MDE
corresponds to the fixed points �x1; x2; x3� � �1=3; 0; 0�,
with ~�� � ~weff � 1=9. After this, the Universe falls on
the final attractor, which is the accelerated fixed point

�x1; x2; x3� � ��=
���
6
p
;
��������������������
1� �2=6

p
; 0�, with ~�� � 1 and

~weff � �1� �2=3.
To return to the JF, we can simply apply the transforma-

tion law (4). In the regime where radiation is negligible
(x3 ’ 0), we obtain the following effective EOS:

 weff �
1

3
�

2n
3�1� n�

x2
2

�1� x1�
2 ; (10)

together with the relation

 �m �
�2�m
3H2F

�
~�m

�1� x1�
2 : (11)

For the accelerated attractor, we have weff � �1� �2�2�
n�=3�1� n��1� 2n�� (this relation was originally found in
the context of inflation in Ref. [13]), which gives weff �
�2=3 for n � 1. The �MDE corresponds to x2 � 0 and,
therefore, weff � 1=3 for any n, giving a / t1=2. From
Eq. (11), one has �m � 2 and �R � �RF� f�
6H _F�=6FH2 � �1 in the �MDE [see Eq. (2)]. Since
�R does not need to be positive-definite, �m can be larger
than unity without any inconsistency.

Notice also thatw� differs from the quantitywDE used to

analyze SN data and defined through the equation H2 �

H2
0��

�0�
m a�3 � �1���0�m �a�3 exp��3

R
dawDE=a��. We

will also computte wDE below.
Most modifications of gravity suggested in the literature

consider terms in addition to the usual Einstein-Hilbert
Lagrangian. For instance, several authors have studied
the following DE model [2,3]:

 f�R� � R��2�n�1�=Rn: (12)

In this case, the potential in the EF is given by

 V��� � Ae��2
��
6
p
=3����e�

��
6
p
=3��� � 1�n=n�1; (13)

which vanishes at � � 0 and has a maximum at �� �
2�n� 1�=�n� 2�. In the limit �! 1, it behaves as
V��� / exp������. For negative n, the pure exponential
approximation is always good during the past cosmic
history if the higher-curvature term is responsible for the
present acceleration, because we are always in the large R
limit. For positive n, the potential (13) differs from the pure
exponential one in the limit R
 �2, and one might expect
that for these values the evolution goes on as in the stan-
dard case and, in particular, the �MDE disappears.
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However, we show now by building an explicit solution
that in reality this does not happen.

Let us focus on the R��4=R model taken for sim-
plicity without radiation. During the �MDE, one can
approximate the scale factor in the JF as a�t� � �t=ti�1=2 �

	�t��t=ti�9=4, where ti is an initial time at the beginning of
the �MDE. This solution is valid at first order in 	 pro-
vided 	 � ��2=144H2

i �=���
�i�
m =3H2

i � �
������������
H=Hi

p
�1=2, which

is indeed small for � of order H0 as present acceleration
requires. After some time, the correction gets larger than
the zeroth order term, and the �MDE is followed by a
phase of accelerated expansion. Then the beginning of the
late-time acceleration is quantified by the condition t �

�144H2
i

����������������������
���i�m =3H2

i �
q

=�2�4=7ti. A similar argument applies
for any n <�1, n >�3=4 with a correction growing as
t5=2�1=2�n�1�. Since R is of order �2 at the beginning of the
�MDE, �4=R dominates over R after the radiation era.
This applies for any �, no matter how small. In other
words, the limit �! 0 of a fourth-order theory does not
reduce to second-order general relativity if, at the same
time, one imposes the conditions of acceleration today (cf.
[14]).

For larger � (
H0), the �MDE can be shortened or
bypassed from the above condition, but then DE dominates
soon without a matter-dominated epoch. Thus, we have
only two cases: either (i) the �MDE exists, or (ii) a rapid
transition from the radiation era to the accelerating stage
(without �MDE) takes place. In summary, the system
never behaves as in a standard cosmological scenario ex-
cept during radiation (during which matter and field play
no role in the expansion rate). In other words, whenever
matter is dynamically important, DE is also important as a
consequence of the coupling. We now confirm all of this by
a direct numerical integration.

In Fig. 1, we plot the evolution of ��, �DM, �rad, and
the equation of state in the EF for n � 1, 4, and 10 and
� � H0. The present values of the radiation and matter
density fractions are chosen to match the observations in
the JF. As expected, the system enters the �MDE after the
radiation era and finally falls on the accelerated attractor.
We ran our numerical code for other positive and negative
values of n (from n � �10 to n � 10, limiting to the
accelerating cases) and found similar cosmological evolu-
tions. The plots in Fig. 1 are therefore qualitatively valid
for any R� 
R�n model (provided F > 0). It is also
interesting to observe the fast variation of the EOS near
z � 0; this shows that a linear parametrization of wDE is
useful only for a limited redshift range.

We can show now that an effective EOS weff � 1=3
during the�MDE is cosmologically unacceptable. In prin-
ciple, this should be shown case by case by a complete
likelihood analysis of CMB and LSS data (see [15] for such
an analysis for various coupled models), but this program
is hardly feasible if we want to make general statements on
f�R� theories. Instead, we take a simpler but general ap-
proach. We calculate the angular size of the sound horizon

 �s �
Z 1
zdec

cs�z�dz
H�z�

�Z zdec

0

dz
H�z�

; (14)

where c2
s�z� � 1=�3�1� 3�b=4���� is the adiabatic

baryon-photon sound speed. According to the WMAP3y
(Wilkinson Microwave Anisotropy Probe 3 year) results
[16], the currently measured value assuming a constant w
is �s � 0:5946� 0:0021. As radiation follows the same
conservation law, the thermal history is the same as in
usual cosmology so that zdec is unchanged. It is easy to
show that the integrand dz=H�z� is conformally invariant.
For the model (12), we integrate numerically the equations
of motion in the EF (including radiation) by changing
initial conditions for x1, x2, and x3 via a trial and error
procedure until we obtain the present Universe with JF
matter and radiation densities as observed in the WMAP
data (we used ��0�m � 0:3 and h � 0:7). Once we have the
full background solution, we evaluate �s with zdec obtained
by solving the relation ~zdece

�����0�=
��
6
p

� zdec. We have
two competing effects: First, since the �MDE is more
decelerated than in the usual case, r�zdec� will be system-
atically smaller; second, the physical sound horizon dis-
tance at decoupling is smaller than in usual cosmology,
partly because in our models a / t1=2 also between teq and
tdec with zeq > zdec and mostly because H�z� before decou-
pling is much higher than in the standard case. Assuming
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FIG. 1 (color online). Evolution of the fractional energy den-
sities (�, matter, radiation) in the EF for the model f�R� �
R��4=R (top panel). Superimposed as dotted lines is the
evolution of ~�� for n � 4 and 10. Notice the constant value
~�� ’ 1=9 in the �MDE phase between radiation and DE
domination. In the bottom panel, we plot the evolution of the
observed EOS wDE of DE in the JF and the effective EOS in both
the EF and the JF (n � 1).
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H�z� � H0�1� z�
2 instead of �1� z�3=2, H�zdec� becomes

30 times larger than in standard models. We find that the
second effect is by far the dominating one, and as a con-
sequence �s turns out to be an order of magnitude smaller
than the observed value. In practice, we find that �s can be
approximated to a few percent using a standard cosmologi-
cal model with an uncoupled dark energy component and a
matter component with an effective equation of state w �
1=3. The typical values we find are near �s � 0:03, i.e.,
more than 10 times smaller than in a standard model. The
periodic spacing �‘ between the acoustic peaks in the
CMB will be larger too by nearly the same factor.

In Fig. 2, we plot the value of �s as a function of the
coupling constant � [see Eqs. (5) and (6)] and for several
n’s. Clearly, there is no way that small changes in ��0�m , h,
or weff can cure this problem. Discrepancies are found as
well for the age of the Universe, which turns out to be near
10–11 Gyr. As expected, we also find that the perturbations
depart significantly from the standard case (as in pure
exponential coupled models [15]): For the matter density
contrast on subhorizon scales, we find 	 a2 during
�MDE instead of the standard linear law.

It is possible to generalize our results in several ways.
First, one can show by direct substitution that the standard
matter era t2=3 is a solution of (2) only for pure power laws
(plus possibly a cosmological constant) R�n, with n � �1,
��7�

������
73
p
�=12. In the last two cases, however, the ‘‘mat-

ter’’ era occurs for �m � 0 and is, therefore, unacceptable.
The first case is clearly the pure Einstein case: This shows
that a standard sequence of (exact) t2=3 expansion followed
by acceleration can occur only for �CDM. In contrast, the
�MDE generically exists as a saddle point. For R�n, with
�1< n<�3=4, the �MDE is instead a stable point, and
the models are ruled out anyway. Still, this alone does not
guarantee that the �MDE is always reached, regardless of
the initial conditions, and a case-by-case numerical analy-
sis is necessary. We explored extensively models such as
f�R� � exp�R� and log�R� and always found �MDE be-
fore acceleration. We also carried out a preliminary analy-

sis of Lagrangians for the models such as
f � R� c�R��R

����n, f � R� c�R
��R

����n, and

f � R� c�RGB�
�n (where RGB is a Gauss-Bonnet term)

and did not find any acceptable cosmological evolution.
For the f�R� � R��4

1=R��2R
2 models, two mecha-

nisms that could satisfy the local gravity constraints were
suggested. One [6] achieves a short interaction range (or a
large field mass) by adjusting �1 and �2 so that
d2V���=d�2 vanishes today, when R �

���
3
p
�2

1. Before
this, the R2 term dominates, and, therefore, we are back
in one of our cases and the �MDE takes place. Moreover,
we find that the local minimum in the EF potential for such
a class of Lagrangians does not lead to a late-time (effec-
tive) cosmological constant. Another possibility to build a
large mass is to take a very small �2 [7], but in this case it
is the 1=R term that dominates the cosmological evolution
from the end of radiation, and again we are back in one of
our cases. So even models that are designed to pass local
gravity experiments fail our cosmological test. In sum-
mary, the main feature of our analysis is the modification
of the standard matter-dominated epoch for the f�R� dark
energy models investigated here. Hence, these models are
ruled out as viable cosmologies even if they are arranged to
pass the supernovae test and the local gravity constraints.
We conjecture that our results apply to a much larger class
of f�R� models; the precise conditions that determine the
cosmological behavior will be published in future works.
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FIG. 2 (color online). The sound horizon angular distance �s
as a function of the coupling � for n � 1 (thick line) and n �
�2, 3, and 10 (dotted lines). The disk marks the value for � �
1=2. The gray region shows the WMAP3y constraint at 4�.
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