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Collective Working Regimes for Coupled Heat Engines
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Arrays of coupled heat engines are proposed as a paradigmatic model to study the trade-off between
individual and collective behavior in linear irreversible thermodynamics. The analysis reveals the
existence of a control parameter which selects different operation regimes of the whole array. In particular,
the regimes of maximum efficiency and maximum power are considered, giving for the latter a general
derivation of the Curzon-Ahlborn efficiency which surprisingly does not depend on whether or not the
individual engines in the array work at maximum power.
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Numerous problems arise in natural and social sciences
where a variety of agents must cooperate to accomplish
some task: engines, organelles within the living cell, divi-
sion of labor within an insect colony, or assembly line
workers in a factory, to name but a few. One fundamental
problem in analyzing such systems is to assess how the
specific agents’ behaviors affect the overall performance.
In the case of heat engines, the thermodynamic efficiency
has been one of the most popular performance criteria after
Carnot [1]. He found that any engine extracting heat from a
reservoir at temperature 7, has to deliver some heat to a
reservoir at lower temperature 7, to do work. Moreover,
Carnot showed that the maximum efficiency in the conver-
sion is n¢c = 1 — T, /T,, known as the Carnot efficiency.
However this efficiency has little practical relevance, since
it refers to processes cycling along reversible paths which
deliver work infinitely slowly. The limitations of equilib-
rium thermodynamics to formulate useful criteria describ-
ing the performance of real engines have motivated the
development of a new field known as finite-time thermo-
dynamics (FTT) [2,3], which, while keeping the formalism
as close as possible to that of equilibrium thermodynamics,
introduces simple modifications to take into account the
main sources of irreversibility observed in real engines.

A paradigmatic model in FTT is due to Curzon and
Ahlborn (CA) [4] (see also [5]), who considered a Carnot
cycle in finite time and in the so-called endoreversible
approximation; i.e., the only sources of irreversibility are
associated with the heat transfers between the reservoirs
and the working system. Assuming that the heat transfers
obey a Fourier law, they found that the efficiency at maxi-
mum power of the engine is given by

nea = 1 = /T1/T>. (N

This result, though subject to some controversy [6], has
been recently derived from the theory of linear irreversible
thermodynamics in systems of coupled heat engines under
the assumption that they all work at maximum power [7].
This is a salient feature because it opens the possibility to
analyze nonisothermal heat engines and refrigerators
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within the framework of linear irreversible thermodynam-
ics [8]; a field up to now almost limited to isothermal
energy converters [9].

A striking fact about Eq. (1) is that it provides a surpris-
ingly good approximation to the observed efficiencies of
very different power plants [2,3,10,11], suggesting that it
represents an ‘‘universal’” behavior rather than a model
specific feature. The main purpose of this Letter is to
address the issue of the relationship between overall and
individual behaviors in systems of coupled heat engines.
Our analytical study reveals that such a relationship is far
from obvious, and specifically we will show that the deri-
vation in [7] is a particular case of a much more general
result which could shed some light on the reasons why
Eq. (1) approaches so well the observed efficiencies of
some real engines.

Our starting point is the same construction as in [7]: an
array of coupled heat engines, each working between
different auxiliary reservoirs (Fig. 1). For simplicity we
assume that the temperature profile strictly increases from
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FIG. 1. Array of coupled heat engines.
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T, to T,, so that we can use the temperature 7 to label each
engine. These heat engines are coupled in the following
sense: the heat output from the engine element at tempera-
ture T + AT is exactly equal to the heat input to the next
engine element at temperature 7'; hence, the complete array
can be considered as a single engine whose overall behav-
ior is determined by the heat exchanges with the reservoirs
at temperatures 7| and T,. To see this, consider the ele-
mental engine working between temperatures 7 and 7 +
AT (Fig. 1): heat is allowed to flow at a rate J(T + AT)
from the hot reservoir at temperature 7 + AT to the cold
reservoir at temperature 7, while part of the heat is turned
into work delivered to the surroundings at a rate AW(T).
This work is done against an external force f(T)AT with
conjugate variable x(T) and flux v(T) = x(T), hence
AW(T) = f(T)u(T)AT. Conservation of energy in this
engine implies that J(T + AT) = J(T) + f(T)v(T)AT,
thus in the limit AT — 0 we get

J'(T) = f(T)v(T), 2

where the prime denotes differentiation with respect to 7.
Integrating this equation gives the net power delivered by
the total array in terms of the heat fluxes J, = J(T}), J, =
J(T,) at the colder and hotter reservoirs:

W= sz dTf(T)v(T) = J, — J,. 3)
T,

Therefore, the efficiency of this energy conversion is

W J
n=—=1-"" )
2 2

The rate of entropy production due to the elemental engine
operating between reservoirs T and 7 + AT can be simply
written as AS(T) = J(T + AT)/(T + AT) — J(T)/T.
Taking into account the conservation of energy we get at
first order in AT

(&)

8661 = (20 LT

T

With the help of Eq. (2) this last expression implies in the
limit AT — 0 that S(T) = (J(T)/T)'. Integrating from T,
to T, gives the total rate of entropy production,

_h

S T, T, (6)

Expression (5) suggests considering (1/7) = —1/T?
and f(T)/T as thermodynamic forces with conjugate fluxes
J(T) and v(T), respectively. For small values of the ther-
modynamic forces and under the assumption of local equi-
librium, linear irreversible thermodynamics [12] allows us

to write the following relationships:

f(T)

1
u(T) = L“(T)T_LIZ(T)F’ @)

f(T)
T
where the Onsager coefficients L;;(T) satisfy
L(T) =0, L(T) =0, Ly (T) = Ly (T), (9)

=L P - ®

L (T)Lyy(T) — L1p(T)* = 0. (10)

These properties ensure the positivity of Eq. (5) and there-
fore that of the total entropy production Eq. (6). As a
consequence, Eq. (4) is bounded from above by the
Carnot efficiency, which is reached when S = 0.

It should be noticed that once the temperatures 7, T,
and the Onsager coefficients L,»j(T) are fixed, the force
profile f(T) cannot be chosen freely. The reason is that
conservation of energy in every engine expressed by
Eq. (2) together with the transport Egs. (7) and (8) implies
a Ricatti differential equation for f(7):

= (11)

/
[Li(OAD] = Ly + 7220,
In the most general case there is no way of writing the
general solution of Eq. (11) by using some quadratures.
However, one can integrate it completely if some extra
information is added. For example, if one particular solu-
tion of Eq. (11) is known, the problem can be reduced to an
inhomogeneous first order linear equation and the general
solution can be found by two quadratures [13].
There exists an interesting class of functions L;;(T)
which allows us to find such a particular solution quite
easily by physical arguments. Let us introduce the so-

called coupling strength parameter
L»(T)

VL11((T) Ly (T) ’

which measures the degree of coupling between the fluxes
v(T) and J(T). Because of the properties (9) and (10) of the
Onsager coefficients this parameter obeys —1 < ¢(T) =
+1. Now assume that all the elemental engines in the
construction satisfy |g(7T)| = 1. In such a case v(T) and
J(T) are tightly coupled for all T and if one of them
vanishes the other flux must vanish also. Imposing v(T) =
0, J(T) = 0 we get

q(T) = (12)

Lp(T) _ Lip(T)

T D) =70 @) ~ L@

(13)

which simply represents a force profile that ensures an
equilibrium state in which the fluxes (7) and (8) and the
entropy production (6) vanish. It is easy to check that
Eq. (13) satisfies the differential Eq. (11) when |¢(T)| =
1. In such a case its general solution can be constructed by
standard methods [13]. The result is

AT?
Lip(D[1 + A(T)]

f(T) = feq(T) - (14)

where A is an integration constant and A(T) is a positive,
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increasing function of 7T

T T/2
nT) = f dTr’ . (15)
r,  Ln(T")

Clearly, in order to avoid divergences in (14), it is neces-
sary that A > —1/h(T,), otherwise the linear relationships
(7) and (8) would be difficult to justify. Once the general
form of the force profile (14) is known we can proceed to
calculate the relevant thermodynamic quantities. The heat
flux (8) crossing each reservoir is simply

J(T) = —AT/[1 + AR(T)] (16)
and the total power (3) delivered by the array is
, AT,
A)=J,(A) —J(A) = ——F<+ AT;. (17
W) = J,(A) = J1(Y) 1% AR(T,) )

At this point it is apparent that the parameter A determines
which kind of energy converter we have. A closer inspec-
tion of Egs. (16) and (17) shows that the system works as a
refrigerator [J(T) > 0, i.e., heat flows up the temperature
gradient and the power W > 0 is consumed by the array]
for A € (—1/h(T,),0), while it may work as a motor
[J(T) <0 and W < 0] only for A > 0 [Fig. 2(a)]. In such
a case, the efficiency (4) is given by

A =1—[1 + Ah(Tz)];;. (18)

We furthermore notice that A can also be viewed as a
control parameter which allows us to select different op-
eration regimes of the array. For instance, to find the
regime of maximum efficiency usually one has to solve
the equation dn(A)/d0A =0 for A. However, when
lg(T)] = 1 Eq. (18) is a decreasing function of A so that
the maximum efficiency is reached at the lower limit of the
motor interval (A = 0) and coincides with the Carnot
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FIG. 2. (a) Plot of W (solid line), J; = J(T;) (dotted line), and

J, = J(T,) (dashed line) vs. A [Egs. (15)—(17)] in a model with
constant Onsager coefficients. The parameters are (in arbitrary
units) L;; =1, T, = 0.5, and T, = 1. (b) Force profiles at
maximum efficiency f.,(T) [Eq. (13), solid line], maximum
QO =2W — (1 — T,/T,)J, (dashed line), and maximum power
[Egs. (14) and (19), dot-dashed line] for the previous model. The
dotted lined represents the force profile f(T) = f.q(T)/2 [7]
which follows from the power maximization of each elemental
engine individually.

efficiency. Such a result is not surprising, since for A = 0
we have f(T) = f.q(T), so that every elemental engine in
the array is in equilibrium and works with an efficiency
given by the Carnot value 5(T) = AT/T. Because of the
invariance of the Carnot efficiency under the coupling of
engines [7], the whole array amounts to a single equilib-
rium engine working between the temperatures 7' and 7T,
with W = 0 and its efficiency is given by the Carnot value.
We mention that due to the reversible behavior of engines
near equilibrium, the sign of the heat fluxes and the power
changes upon variation of A in a neighborhood of A =0
[Fig. 2(a)].

Regarding the regime of maximum power, we will
show in the following that the Curzon-Ahlborn efficiency
(1) is a fundamental result in linear irreversible thermody-
namics with no other restrictions imposed on the Onsager
coefficients than the coupling strength parameter (12) sat-
isfies |¢(T)| = 1. Solving the equation dW(A)/dA = 0 we
get after some algebra a second order equation with two
roots of opposite sign. The negative root must be discarded,
since it lies outside the allowed interval (—1/h(T,), +0).
Substituting the positive root

_JTi— VT
SN "

in Eq. (17) gives the maximal power output W =
—h(T,)"Y(JT, — /T;)?, which mimics familiar results in
FTT, with the factor A(T,)”! playing the role of an aver-
aged thermal conductance between 77 and T, [2,3,10].
Finally, Egs. (18) and (19) give the Curzon-Ahlborn result

for the efficiency at maximum power: ey = 1 — /T, /T,.
A different approach to derive Eq. (1) was proposed in
[7] which takes advantage of the fact that the Curzon-
Ahlborn and Carnot efficiencies share the same invariance
property under the coupling of engines. Therefore, if we
could couple elemental engines working at maximum
power with an efficiency given by Eq. (1) the result would
be an engine which already works at maximum power with
the Curzon-Ahlborn efficiency. We emphasize that this can
be done only for a limited class of systems. The reason is as
follows: maximizing the power of every elemental engine
in the array we obtain f(T) = f.q(T)/2 [7], and substitut-
ing this force profile in Eq. (11) gives a differential equa-
tion which amounts to an additional restriction imposed on
the Onsager coefficients. With the help of Eq. (12) and
assuming that |¢(T)| = ¢ for all T, it can be written as

Ly (T)Y 4— >\ Ly(T
»(T) _ q 5 22(2 )‘ (20)
T 4 —2q T
The general solution is
Lo(T) = CT@ 4)/4=24%), (1)

where C is an integration constant. Then Eq. (21) defines
the class of systems tacitly assumed in the derivation of the
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Curzon-Ahlborn efficiency in [7]: only these engines can
be coupled working individually at maximum power.

In conclusion, the global optimization of the total power
W(A) with respect to A shows that, in contrast to the
derivation in [7], the Curzon-Ahlborn efficiency does not
necessarily require that every unit performs work at maxi-
mum power, thus Eq. (1) has a wider scope than so far was
expected. This idea is apparent in Fig. 2(b), which shows
force profiles for the maximum efficiency and maximum
power regimes of the array in a specific model with
T-independent Onsager coefficients: while in the regime
of maximum efficiency the force profile given by Eq. (13)
implies that every elemental engine is in equilibrium and
works with the Carnot efficiency, at maximum power a
single elemental engine at temperature T* € (T}, T,)
works in such operation regime. It seems plausible to argue
that a real power plant could display an efficiency close to
the Curzon-Ahlborn value if the processes taking place in it
are strongly coupled and the global performance is opti-
mized to give the maximum power. Moreover, the im-
provements carried out along the last decades in the
design of different power plants and in its components
has witnessed a concomitant convergence of the observed
efficiencies towards the values given by Eq. (1).

Besides power and efficiency, one can consider different
figures of merit. Since “one cannot have it all” [14] some
compromise-based criteria have been proposed [3]. Here
we consider the so-called () criterion [15], it represents a
trade-off between useful energy delivered to the surround-
ings and energy lost by any energy converter which is
specially easy to implement. In our case and for |g(T)| =
1 it can be written as ) = 2W — (1 — 7)J,, where 7 =
T,/T,. The force profile which maximizes ) [Fig. 2(b)]
can be found in the same way as already done for efficiency
and power, again it differs from the one maximizing the
)-function for each unit (3f,(7)/4). The efficiency in

such operation regime is g = 1 — /7(1 + 7)/2, a well-
known result of some endoreversible models in FTT [3,15].

The previous results suggest that, given the constraints
inherent in the couplings, it is not necessary (nor generally
possible) to impose the same operation regime to every
agent in order to achieve a desired overall performance. It
shows also that when |¢(T)| = 1 some performance crite-
ria, as the efficiency, may become independent of the
structure of the system, as detailed by the functions
L;;(T), in some operation regimes (maximum efficiency,
maximum power or maximum ().

Unfortunately, we have not found a general solution of
Eq. (11) for arbitrary g. Nevertheless we have analyzed
various models for which Eq. (11) has particular solutions
of the form f(T) o« 1/T and compared the results which
stem from the previous theory with those coming from the
FTT formalism using the standard Carnot-like models
incorporating both external and internal irreversibilities.
When the array works as a motor [Fig. 2(a), A > 0] the
parametric plot efficiency versus power for |g| = 1 is an

open curve typical of the endoreversible Carnot-like mod-
els, while for |g| <1 the plot becomes loop-shaped, in
agreement with results of real heat engines and with pre-
dictions of irreversible models in FTT [2,3]. Finally, in the
case of refrigerators, Fig. 2(a) (A < 0) suggests that there is
no obvious thermodynamic function which could be opti-
mized, though such functions could exist for particular
choices of the Onsager coefficients, see [8].

In summary, we have developed a theory which allows a
detailed analysis within linear irreversible thermodynam-
ics of arrays of coupled heat engines working between
arbitrary temperature differences. A control parameter
has been found which selects different operation regimes
for the whole array without imposing the same regime to
every engine in the array. In the limit of tightly coupled
fluxes (|g| = 1) we showed that the efficiency becomes a
function of 7 = T /T, which is independent of the struc-
ture of the system [i.e., of L; j(T)] in various operation
regimes, as occurs in endoreversible models in FTT, while
for |g| <1 the qualitative behavior of irreversible models
is recovered.
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