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The self-similar Lorentz billiard channel is a spatially extended deterministic dynamical system which
consists of an infinite one-dimensional sequence of cells whose sizes increase monotonically according to
their indices. This special geometry induces a nonequilibrium stationary state with particles flowing
steadily from the small to the large scales. The corresponding invariant measure has fractal properties
reflected by the phase-space contraction rate of the dynamics restricted to a single cell with appropriate
boundary conditions. In the near-equilibrium limit, we find numerical agreement between this quantity
and the entropy production rate as specified by thermodynamics.
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Over the last two decades, the nonequilibrium statistical
mechanics of chaotic dynamical systems has received a
great deal of attention, in particular, regarding the positiv-
ity of entropy production and its connection to dynamical
properties characteristic of chaos, such as the Lyapunov
exponents [1–4].

Of particular interest is the two-dimensional periodic
Lorentz gas with external forcing and a Gaussian isokinetic
thermostat (GIKLG) [1]. This is an elementary model of
electronic conduction under a nonequilibrium constraint.
The thermostat is actually a mechanical constraint and acts
so as to remove the energy input from the external forcing
[2]. Under the action of this thermostat, the kinetic energy
remains constant and thus fixes the temperature of the
system; no interaction with a hypothetical environment is
needed in order to achieve thermalization. Rather, dissipa-
tion occurs in the bulk. As shown in [5], this model enjoys
strong chaotic properties. Its natural invariant measure is
fractal, with one positive and one negative Lyapunov ex-
ponent, whose sum is negative, and identified as minus the
entropy production rate [6]. The comparison with the
corresponding phenomenological expression provides a
relation between the phase-space contraction rate and
conductivity.

The GIK dynamics can actually be given a Hamiltonian
formulation [7]. This result is contained in a more general
formalism [8], by which one identifies the GIK trajectories
with the geodesics of a torsion free connection, called the
Weyl connection. In this formalism, one shows the GIKLG
is equivalent, by a conformal transformation, to a distorted
billiard whose trajectories are straight lines, referred to as
W flow. In this geometry, the cells are stretched and
trajectories accelerated in the direction of the external
field. A detailed analysis of the W flow [9] reveals that
the cells’ stretching is the essential mechanism to driving
the nonequilibrium stationary state.

In this Letter, we investigate the connection between the
chaotic dynamics and nonequilibrium thermodynamics of

a self-similar billiard chain, such as defined in [10]. This
billiard chain can be thought of as a simplified version ofW
flow described above; we retain the stretched geometry of
the cells, but get rid of the bulk dissipation.

A self-similar billiard is thus a one-dimensional spatially
extended system such as shown in Fig. 1. It consists of an
infinite collection of two-dimensional cells, identical in
shapes, but differing in sizes, which are scaled and glued
together along a horizontal axis. Each cell consists of
convex obstacles upon which point particles collide elas-
tically, independently of one another. The left and right
borders of every cell are open and scaled by a constant ratio
which we denote by �. The system is so constructed that
� � 1 corresponds to the Lorentz channel [3], which ex-
hibits diffusion, but no bias. When � � 1, the system
sustains a nonequilibrium stationary state, characterized
by a steady density current from the smaller to the larger
scales.

Strictly speaking, this self-similar billiard channel is
different from the W flow, constructed along the lines of
[8]. However, the two systems have in common the scaling
property between the left and right borders of every cell.
An important difference concerns the dynamics between
collisions. Here we assume free propagation of point par-
ticles between collision events, which amounts to sup-
pressing the thermostating mechanism of the GIK
dynamics. Another example of a billiard with a similar
scaling mechanism was considered in [11]. Other systems

 

FIG. 1 (color online). The self-similar Lorentz channel billiard
and a trajectory.
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which bear similarities with this one are the multibaker
maps with energy [12]. Both systems are area preserving
and energy conserving, with an external driving force (here
in the form of a geometric constraint) that induces a macro-
scopic current, without the necessity of a thermostating
mechanism.

In order to specify the stationary properties of the sys-
tem, we resort to the special flow of the billiard [13], thus
substituting the real time dynamics by a discrete mapping
from one collision event to the next. This is a usual
procedure for the study of ergodic properties of billiards,
which allows us to replace the volume-preserving dynam-
ics on the extended system by a phase-space contracting
mapping on a periodic cell. This feature is also common to
multibaker maps with energy, which can be reduced to
dissipative baker maps such as studied in [14], see [12].
Moreover, the invariant measure has fractal properties
much like that of the GIKLG [15].

Following [6], we identify the phase-space contraction
rate with the entropy production rate, and take the limit
�! 1 so as to compare this expression to its thermody-
namic counterpart. We thus infer a relation between the
current of the near-equilibrium system (� � 1) and the
diffusion coefficient of the equilibrium system (� � 1),
much like a fluctuation-dissipation theorem. This result is
confirmed by our numerical computations.

Going back to the definition of the model, the reference
cell, with index i � 0, is represented in Fig. 2(a). It is a
region defined by the exterior of five disks, four of which
are centered at the corners of the cell, and one located at the
center. The dissymmetry between the left- and the right-
hand sides depends on the scaling parameter �. The other
tunable parameter is the ratio R=d between the center
disk’s radius R and the cell’s horizontal width d. The radii
of the outer disks are fixed to R=

����
�
p

(to the left) and R
����
�
p

(to the right). The vertical separations between the outer
disks are taken to be d

���������
3=�

p
to the left and d

�������
3�
p

to the

right, so that the usual Lorentz channel is retrieved for� �
1. We note that restrictions must be imposed on the range
of permitted values of the parameters for the self-similar
billiard to share the hyperbolicity of the Lorentz channel.
The details can be found in [10]. We assume these con-
ditions to be met in the sequel.

The whole chain is constructed by adding a cell to the
right of the reference cell, with index i � 1, identical in
shape but with all its lengths multiplied by �, and another
one to the left, with index i � �1, with all the lengths
divided by �. We repeat this construction in such a way
that in the ith cell, i 2 Z, all the lengths are multiplied by
�i. The resulting billiard chain is so constructed that the
mirror symmetry with respect to the transformation �!
1=� remains.

Consider a particle moving inside the billiard with ve-
locity ~v. Figure 1 shows such a trajectory. As the particle
moves from one cell to a neighboring one, the length scales
change by a factor �. Equivalently we can rescale the
velocity by a factor 1=� and keep the length scales un-
changed. For both transformations the characteristic time
between successive collisions with the walls changes by a
factor �.

We can therefore analyze the dynamics on the extended
self-similar billiard in terms of the dynamics in a periodic
cell by applying proper boundary conditions and rescaling
the vertical coordinate and velocity, as the particle exits
either

 to the right:
�
~r � �d; h� ! �0; h=��;
~v � �vx; vy� ! �vx=�; vy=��;

(1)

 or to the left:
�
~r � �0; h� ! �d; h��;
~v � �vx; vy� ! �vx�; vy��:

(2)

Here h is the y coordinate of the trajectory as it crosses the
cell’s left or right boundaries. An example is depicted in
Fig. 2(b). These conditions are analogous to periodic
boundary conditions for the usual Lorentz channel billiard
but for the self-similar structure parametrized by �.

Billiards are instances of so-called special flows [13],
which is to say their time evolutions can be specified by the
mapping of the coordinates between successive collision
events, together with the time interval between them. This
kind of representation is particularly useful to the evolution
of self-similar billiards, where the absence of an overall
time scale in the extended system poses difficulties in the
definition of proper time averages. Indeed, point particles
typically move towards the direction of increasing cell
sizes, thereby decreasing their collision frequency. Such
ambiguities become irrelevant when the evolution is con-
sidered from one collision event to the next.

The particle’s coordinates from one collision with the
walls to the next are specified by the Birkhoff map [3]
�n � �s; v;$�n � �n�1 � ���n�. Here the variable s rep-
resents the arclength along the unit cell boundary (includ-

 

FIG. 2. (a) Geometry of the reference cell. (b) Sketch of
the boundary conditions in the periodic cell, as given by
Eqs. (1) and (2).
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ing the open sides), v is the modulus of the particle’s
velocity, and $ is the sine of the angle between the out-
going velocity and the normal to the cell’s boundary. This
map, together with Eqs. (1) and (2), provide the map for the
specification of a trajectory.

In order to keep track of the correspondence between the
dynamics on the periodic cell and that on the extended
lattice, we introduce a new variable In, which takes integer
values and labels the cell where the particle is located after
n iterations of the map. This variable changes according to
In�1 � In � a��n�, where we introduced the jump func-
tion, a��n�, which takes the values a��n� � 1 (respectively
�1) if ���n� has the spatial coordinate sn�1 on the
right (respectively left) open side of the cell, otherwise
a��n� � 0.

The time it takes a trajectory at a (phase-space) point �
on the boundary to intersect again with the boundary of the
billiard depends on the speed v as

 T��� �
L���
v

; (3)

where L��� is the length of the trajectory between inter-
sections at � and ���� of the trajectory with the boundary
of the unit cell. A complete characterization of the con-
tinuous time flow is thus given by the variables (�, �) in the
unit cell, with 0< �< T���, a new variable that restores
the position between collisions. The equivalence between
the continuous time flow on the extended lattice and the
Birkhoff map with the extra variable � is further discussed
in [10].

A remarkable property of the Birkhoff map defined
above is that it does not preserve phase-space volumes.
Indeed, as the particle exits to the right and reenters to the
left or vice versa, both s and v coordinates are rescaled by
��1 (respectively �). Accordingly, probability measures
evolve under iteration of the density evolution operator
associated to the Birkhoff map towards a unique invariant
measure (i.e., a probability measure invariant under this
operator) with fractal properties, characteristic of a non-
equilibrium stationary state. This measure has three
Lyapunov exponents, two negative and one positive, �1 >
0 � �2 > �3, and such that the phase-space contraction
rate � � ���1 � �2 � �3�> 0.

The second Lyapunov exponent, �2, is specific to the
self-similar geometry of the billiard; it is due to the con-
traction of the v coordinate as the particle moves around
the cell:

 �2 � � lim
n!1

�In
n

log� � 0; (4)

where �In � In � I0 is the lattice displacement vector
after n iterations or winding number. If �> 1, the particle
moves preferentially to the right, corresponding to
�In=n > 0 and the other way around if �< 1. The sym-
metric case � � 1 is the usual Lorentz channel with only
two nontrivial Lyapuonv exponents, i.e., �2 � 0. We there-

fore see that the stationary value of v under the Birkhoff
map is trivially vn ! v1 � 0, which is to say particles
ever move towards the larger lattice scales, where times
between collisions keep increasing and collisions become
seldom.
�2 accounts for one half of the total phase-space con-

traction rate. The contraction of the vertical coordinate in
Eqs. (1) and (2) accounts for the other half, due to �1 and
�3,

 �1 � �3 � �2 < 0: (5)

These two Lyapunov exponents are related to the compo-
nents s and $ of �.

The invariant measure therefore has a product structure,
d3m��� � d2m1�s;$�dm2�v�. When � � 1, we have
dm2�v� � ��v�dv on the one hand, where � is the Dirac
delta function, and, on the other hand, since �1 > 0 and
�3 < 0, m1 is a fractal , whose Lyapunov dimension, here
defined by 1� �1=j�3j, is somewhere between 1 and 2.

The entropy production per collision can be defined
dynamically as the phase-space contraction rate [6], � �
���1 � �2 � �3� � �2�2, which can be computed in
terms of the winding number, as in Eq. (4).

The winding number can furthermore easily be con-
nected to the average drift of particles on the extended
system. As we showed in [10], the average of the spatial
coordinate X on the extended system evolves linearly in
time, with a slope V which defines the drift velocity, hXit �
Vt. The winding number and drift velocity are equal up to
dimensional factors:

 lim
n!1

�In
n
�
T�
d
V; (6)

where d is the reference cell’s width and T� the average
time between collisions measured in that same cell. The
phase-space contraction rate can therefore be expressed
directly in terms of the average drift velocity: � � 2T�V

d 	

log�. This expression can be transposed to a phase-space
contraction rate per unit time in the limit �! 1. In this
limit, V and log� both scale like �� 1, so that the lowest
order contribution to � is O��� 1�2, with T��1. Dividing
� by the latter defines the (dynamical) entropy production
per unit time,

 

�
T��1

�
2V
d
��� 1� �O��� 1�3: (7)

As we showed in [10], the phenomenology of self-
similar systems such as this one is characterized on the
one hand by a constant drift from the small to the large
scales and, on the other, by a mean square displacement
which undergoes a transition from diffusive to ballistic
behavior at a crossover time which scales like �3=2=���
1�. Therefore, as �! 1, self-similar systems can be con-
sidered as diffusive systems with constant drift, such as
modeled by a Smoluchowski type equation for the proba-
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bility densityW, @tW �D@2
xW � V@xW. In the stationary

state, the phenomenological entropy production rate is
given [14] by the drift velocity V squared, a term quadratic
in �� 1, divided by the diffusion coefficient D, here
computed at � � 1.

Equating Eq. (7) with the expression of the thermody-
namic entropy production rate at O��� 1�2, we infer the
following relationship between the velocity drift and dif-
fusion coefficient:

 lim
�!1

V
�� 1

�
2D

d
; (8)

which can be viewed as a definition of the mobility, the
external field being given by 2��� 1�, and therefore es-
tablishes the equivalent of a fluctuation-dissipation theo-
rem. This relationship is confirmed by the numerical
results presented in Fig. 3, which were carried out for
different choices of R=d and four different values of �
close to 1. Equation (6) was also verified in the numerical
scheme.

To conclude, self-similar billiards are simple mechanical
models of conduction in spatially extended systems with
volume-preserving dynamics, whereby a geometric con-
straint induces a steady current. As in the conformal trans-
formation of the GIKLG [9], or the multibaker maps with
energy [12], the essential ingredient for this behavior is the
rapid increase of phase-space volumes, whose rate is here
given by �.

These models lend themselves to further exploring the
connections between the chaotic properties of nonequilib-
rium dynamical systems and phenomenological thermody-
namics. The dynamical properties are conveniently

analyzed by the means of the Birkhoff map on the periodic
cell, which specifies the evolution of phase points from one
collision to the next, here on a three-dimensional space.

Whereas the dynamics on the extended system preserves
phase-space volumes, the Birkhoff map on the periodic cell
contracts phase-space volumes, with an invariant measure
whose fractal dimension is between 1 and 2. A similar
mechanism of contraction of phase-space volumes at the
periodic boundaries occurs with the W flow. The phase-
space contraction rate can furthermore easily be computed
in terms of the map’s winding number, which bears a
simple connection to the average velocity drift associated
to the macroscopic current. The comparison between
phase-space contraction rate and phenomenological en-
tropy production yields an expression of the velocity drift
near the equilibrium regime.
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FIG. 3 (color online). The difference 2D=d� V=��� 1� vs
R=d is O��� 1�2, as expected from Eq. (8). Here shown are the
values � � 1:02, 1.05, 1.10, 1.15 from bottom to top. The
straight lines show 2��� 1�2. Here V is computed as the slope
of hXit vs t, where the average is computed out of many random
initial conditions.
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