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We investigate the capacity of bosonic quantum channels for the transmission of quantum information.
We calculate the quantum capacity for a class of Gaussian channels, including channels describing optical
fibers with photon losses, by proving that Gaussian encodings are optimal. For arbitrary channels we show
that achievable rates can be determined from few measurable parameters by proving that every channel
can asymptotically simulate a Gaussian channel which is characterized by second moments of the initial
channel. Along the way we provide a complete characterization of degradable Gaussian channels and
those arising from teleportation protocols.
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One of the aims of quantum information theory [1] is to
follow the ideas of Shannon and to establish a theory of
information based on the rules of quantum mechanics. A
key problem along this way is the calculation of the
quantum capacity of noisy quantum channels. That is, the
question how much quantum information (measured in
number of qubits) can be transmitted coherently through
a channel such as a lossy optical fiber, or stored reliably in
a quantum memory—the future version of present-day
hard drives? Despite substantial progress [2,3] a general
computable formula for this capacity, comparable to
Shannon’s seminal coding theorem for classical informa-
tion, is not in sight.

In this Letter, we focus on the special case of bosonic
channels, in which a collection of bosonic modes is used to
transmit (quantum) information. Arguably, this is the prac-
tically most important class of channels, since quantum
information is almost invariably sent using photons: be it
through the ubiquitous optical fibers, in free space, or in the
microwave range via superconducting transmission lines
(cf. [4]). In addition to the transmission in space, bosonic
channels also play a major role for ‘‘transmission in time,’’
i.e., in quantum memories. Several of the most advanced
light-matter interfaces [5] make use of atomic ensembles to
store photonic quantum information in collective atomic
degrees of freedom which are in turn well described by
bosonic modes. The quantum capacity of the correspond-
ing channel is an adequate figure of merit for such devices.

The Letter has two parts in which we first deal with
incomplete knowledge of the physical channel and then
explicitly determine the capacity for some of the most
relevant cases. In the first part we prove that the quantum
capacity of any bosonic channel T is lower bounded by that
of a corresponding Gaussian channel TG, which can be
derived from measurable moments of T. This implies that
for determining and certifying achievable rates for the
transmission of quantum information through T we need
not know the channel exactly (which might be hardly
possible in infinite dimensions), but merely its second

moments, i.e., a few measurable parameters. In the second
part we then explicitly calculate the quantum capacity of a
class of Gaussian channels, which includes the important
case of attenuation channels modeling optical fibers with
photon losses and broadband channels where losses and
photon number constraints might be frequency dependent.
Along the way we provide two tools that might be of
independent interest: a complete characterization of de-
gradable Gaussian channels and of those arising from tele-
porting through Gaussian states.

Preliminaries.—Before we derive the main results we
will briefly recall the basic notions [6,7]. Consider a bo-
sonic system of N modes characterized by N pairs of
canonical operators �Q1; P1; . . . ; QN; PN� �: R for which
the commutation relations �Rk; Rl� � i�kl are represented
by the symplectic matrix � � �Nk�1�i�y�. The exponen-
tials W� :� ei�R, � 2 R2N are called Weyl displacement
operators. Their expectation value, the characteristic func-
tion, ���� :� Tr��W�� is the Fourier transform of the
Wigner function and for Gaussian states

 ���� � ei��d��1=4�����; (1)

with first moments dk � Tr��Rk� and covariance matrix
(CM) �kl :� Tr��fRk � dk; Rl � dlg	�. Note that coher-
ent, squeezed and thermal states in quantum optics are all
Gaussian states.

Gaussian channels [7,8] transform Weyl operators as
W� � WX�e

��1=4��Y� and act on covariance matrices as

 � � XT�X 	 Y: (2)

Particularly important instances of single-mode Gaussian
channels are attenuation and amplification channels for
which X �

����
�
p

1 and Y � j�� 1j1. For 0 
 � 
 1 this
models a single mode of an optical fiber with transmissiv-
ity � where the environment is assumed to be in the
vacuum state. The latter reflects the fact that thermal
photons with optical frequencies are negligible at room
temperature. For �> 1 the channel becomes an amplifi-
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cation channel, where the noise term Y is now a conse-
quence of the Heisenberg uncertainty.

Teleportation channels.—We will now derive the form
of Gaussian channels which are obtained when teleporting
through a centered bipartite Gaussian state. As this is
useful for applying but not necessary for understanding
the following it might be skipped by the reader. Let

 � �
�A �C
�TC �B

� �

be the CM of a Gaussian state of NA 	 NB modes with
NA � NB. Assume Bob wants to teleport a quantum state
of NB modes with CM � to Alice. Using the standard
protocol [9] he sends pairs of modes from � and �B
through 50:50 beam splitters, measures the Q and P quad-
ratures, and then communicates the outcomes. Depending
on the latter Alice applies displacements to the modes in
�A. The simplest way of deriving an expression for the
output is to start with the Wigner representation and to
assume that the state to be teleported is a centered
Gaussian. The Wigner function before the measurement
is up to normalization given by exp���MT

BS�� �
���1MBS��, where MBS corresponds to the beam-splitter
operation. With � � ��A; �B; �B0 � the final Wigner function
is then proportional to

 

Z
d�Bd�B0e

���MT
XM

T
BS�����

�1MBSMX��; (3)

where MX incorporates the displacements, i.e., it is the
identity matrix plus an arbitrary 2NB � 2NB off-diagonal
block which maps the 2NB measurement outcomes onto
the respective displacements. To circumvent integrating
Eq. (3) we can now go to the characteristic function, i.e.,
the Fourier transformed picture. The integration then boils
down to picking out the upper left block of the inverted
matrix �MT

XM
T
BS�� � ��

�1MBSMX�
�1. The inversion is,

however, trivial since M�1
BS � MT

BS and M�1
X is obtained

fromMX by changing the sign of all off-diagonal entries. In
this way we obtain that the input CM is transformed to

 � � XT�X 	 ��A 	 �C�X	 ��C�X�T 	 XT�T�B�X� ;

(4)

where � � diag�1;�1; 1;�1; . . .� and X is such that
���
2
p
X

is the matrix of displacement transformations, i.e., the gain
which is typically chosen to be

���
2
p

1.
Clearly, Eq. (4) has the form (2) and following the above

lines it is straight forward to show that the channel is
Gaussian and maps any (not necessarily centered
Gaussian) input characteristic function �in into

 �out��� � �in�X������ ��X��: (5)

For standard protocols (X � 1) on single modes (NA �
NB � 1) this was derived in [10].

Achievable rates for arbitrary channels.—The subject of
interest is the quantum capacity Q�T� of an arbitrary, a
priori unknown, channel T. We will show how one can

certify achievable rates for the transmission of quantum
information through T by only looking at the CM � of a
state �T � �T � id�� � which is obtained by sending half
of an arbitrary entangled state  through the channel. �
could be determined by homodyne measurements. The
argument combines (i) the relation between entanglement
distillation and quantum capacities observed in [11],
(ii) the extremality of Gaussian states shown in [12], and
(iii) the explicit form of Gaussian teleportation channels
derived in the previous section. All together this leads to
the chain of inequalities

 Q�T� 
 D ��T� 
 D �G��T�� 
 Q�TG�: (6)

Here D ��T� is the distillable entanglement under proto-
cols with one-way communication (from Bob to Alice).
Since a classical side channel does not increaseQ�T� this is
clearly a lower bound to the capacity as Alice and Bob
could simply first distill �T and then use the obtained
maximally entangled states for teleportation [11]. The
second inequality uses that replacing �T by a Gaussian
state G��T� with the same CM � can only decrease the
distillable entanglement [12] (see Fig. 1 for an operational
meaning). Finally, if we use the Gaussian state in turn as a
resource for establishing a teleportation channel TG we end
up with the sought inequality Q�T� 
 Q�TG�. TG is then
the Gaussian channel in Eqs. (4) and (5), which is for a
fixed teleportation protocol (a fixed matrix X) completely
determined by �.

Bounds on the quantum capacity of Gaussian channels
were derived in [13,14] and we will show below that it can
be calculated exactly for some important cases. Note that a
simple bound forQ�T� can be obtained from a lower bound
to D �G��T��, the conditional entropy of the Gaussian
state with CM �, i.e., Q�T� 
 S��A� � S���.

Before we proceed, two comments on the quality of the
above bound and its operational meaning are in order: The
given argument holds for arbitrary T and  . However,
since we bound by Gaussian quantities the inequality might

 

T

T

Alice Bob

FIG. 1. In order to obtain a Gaussian channel from an arbitrary
quantum channel T Bob (the sender) prepares n instances of an
entangled state  half of which he sends through T�n. After
applying two arrays of 50:50 beam splitters to the output ��nT �
��T � id�� ���n the n reduced states will converge to a Gaussian
state G��T� (with the same CM as �T) which can in turn be used
to establish a Gaussian teleportation channel TG.
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become trivial [i.e., Q�TG� � 0 though Q�T� � 0] if both
T and  are too far from being Gaussian. On the other
hand, if T is Gaussian and j i � �coshr��1P

n�tanhr�njnni
is a two-mode squeezed state, then in the limit r! 1 the
inequality becomes tight, i.e., Q�TG� ! Q�T� with expo-
nentially vanishing gap. This also indicates how (bounds
on) the rate achievable by a given channel can be probed
experimentally: sending part of a two-mode squeezed state
through T and measuring the second moments of the
resulting state allows to computeQ�TG� using the formulas
below.

Quantum capacity of Gaussian channels.—It was
proven in [2] that the quantum capacity of a quantum
channel T can be expressed as

 Q�T� � lim
n!1

1

n
sup
�
J��; T�n�; (7)

 J��; T� � S�T����� S��T � id�� ��; (8)

where  is a purification of � and J is known as the
coherent information. In general, the calculation of Q�T�
from the above formula is a daunting task since (i) the
coherent information is known to be not additive, i.e., the
regularization n! 1 is necessary, and (ii) due to lacking
concavity properties there are local maxima which are not
global ones. On top of this, for bosonic channels the
optimization is over an infinite dimensional space.

Fortunately, for a class of Gaussian channels including
the important case of the lossy channel, these obstacles can
be circumvented by exploiting recent results on degrad-
ability of channels [3,15] and extremality of Gaussian
states [12].

To this end consider a channel T��S� � TrE�U��S �
’E�Uy� expressed in terms of a unitary coupling be-
tween the system S and the environment E which is ini-
tially in a pure state ’E. The conjugate channel Tc��S� �
TrS�U��S � ’E�U

y� is defined as a mapping from the
system to the environment. As shown in [3] the coherent
information can be expressed in terms of a conditional
entropy if there exists a channel T0 such that T0 � T �
Tc; in this case T is called degradable. More precisely, if
~�S0E0 is the extension of the state ~�S0 � T0 � T��� to the
environment E0 of T0, then

 J��; T� � S�~�S0E0 � � S�~�S0 � �: S�E0jS0�: (9)

The conditional entropy S�E0jS0� is known to be strongly
subadditive [1], i.e., for a composite system S�E012jS

0
12� 


S�E01jS
0
1� 	 S�E

0
2jS
0
2�. This has important consequences:

for a set fTig of degradable channels J��;�iTi� 
P
iJ��i; Ti�, where �i are the corresponding reduced states,

and if each Ti is a Gaussian channel, we have in addition

 J��;�iTi� 

X
i

J��i; Ti� 

X
i

J�G��i�; Ti�: (10)

The last inequality follows from the extremality of
Gaussian states with respect to the conditional entropy

[7,12] together with the fact that for Gaussian channels
Tc can be chosen to be Gaussian and the CM is transformed
irrespective of whether the input was Gaussian or not. As a
consequence, if Ti are degradable Gaussian channels, then

 Q��iTi� �
X
i

sup
�G
J��G; Ti�; (11)

where the supremum is now taken only over Gaussian
input states �G. Calculating the latter for Gaussian chan-
nels is now a feasible task which was solved for the single-
mode case in [13] and in [14] for broadband channels under
power constraints using Lagrange multipliers. In fact, if we
impose a constraint on the input energy of the formP
i!iNi � E, where Ni is the average input photon number

of mode iwith corresponding frequency!i, then the above
argumentation still holds, since the constraint just depends
on the CM. The importance of Eq. (11) stems from the fact
that a large class of Gaussian channels is indeed degrad-
able, as shown in [15] and extended below. In particular,
we can apply Eq. (11) to attenuation (amplification) chan-
nels with transmissivity � (gain

����
�
p

). Together with the
optimization carried out in [13] [Eq. (5.9)] this yields (see
Fig. 2)

 Q��� � maxf0; log2j�j � log2j1� �jg: (12)

Note that the quantum capacity of every degradable
Gaussian channel can easily be calculated as J becomes
a concave function of the CM such that local maxima are
global ones.

Degradable Gaussian channels.—We will now investi-
gate the condition under which Eq. (11) was derived and
characterize the set of degradable Gaussian channels, ex-
tending the results of [15]. To this end we represent the
channel in terms of a unitary coupling between the system
with NS modes and a (minimally represented) environment
ofNE 
 2NS modes which are initially in the vacuum state
with CM �E � 1. The interaction is described by a sym-
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FIG. 2. Quantum capacity of a channel with photon losses as a
function of the transmission length l in terms of the absorption
length la, i.e., � � e�l=la . For quantum memories l and la are
storage and decay time. The capacity vanishes for l=la � ln2 �
0:693, where the channel can be considered to be part of a
symmetric approximate cloning channel.
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plectic matrix of size 2�NE 	 NS� � 2�NE 	 NS�which we
write in block form as

 S �
A B
C D

� �

[16]. The output CM of the channel T: � � X�XT 	 Y is
then simply the lower right block of S��E � ��ST (i.e.,
D � X and C�ECT � Y), whereas the conjugate channel
Tc corresponds to the upper left block.

Let us first focus on the case NS � NE and assume for
simplicity that the blocks in S are nonsingular. A channel
is degradable if Tc � T�1 is completely positive which is
for a Gaussian trace preserving map equivalent to the con-
dition [8]

 Y 	 i� 
 iX�XT: (13)

Inserting the above block structure and using [16] shows
that complete positivity of Tc � T�1 is equivalent to

 0 
 �1	 i�� � K�1	 i��KT; K � CTD�T�D�1C:

(14)

Expressing this in terms of X and Y finally gives [16]

 �2X�XT�T � 1�Y 
 0: (15)

Similarly we can derive a condition for degradability of Tc
(antidegradability of T) which is again given by the ex-
pressions (14) and (15) which have then to be negative
instead of positive semidefinite.

Since for NE � NS � 1 X is a 2� 2 matrix and thus
X�XT�T � 1 detX, condition (15) implies that either T or
Tc is degradable, as shown in [15]. Hence, as antidegrad-
able channels have zero quantum capacity (due to the no-
cloning theorem), the quantum capacity of every Gaussian
channel with NS � NE � 1 can easily be calculated. In
fact, by using the freedom of acting unitarily before and
after the channel (which does not change its capacity) one
can generically bring the channel to a normal form [17,18]
which only depends on the symplectic invariant detX such
that Q�T� of every such channel is given by Eq. (12) with
� � detX.

Let us finally briefly comment on the case NE � NS. If
the environment is smaller than the system, then we can
easily follow the above lines for instance by choosing a
representation of the channel with larger NE equal to NS
[19]. It is worth mentioning that if S corresponds to a
passive (i.e., number preserving) operation, then for NE <
NS there are always unaffected modes such that Q�T� � 1
without additional constraints. If NE > NS then Eq. (15) is
merely a necessary, whereas Eq. (14) is still a necessary
and sufficient condition for degradability [19]. Applying
the latter to a general single-mode channel with NS � 1,
NE � 2 shows that generically one has neither degradabil-
ity nor antidegradability. Hence, it remains open whether
in this case the capacity is given by Eq. (11). However, we
can easily derive an upper bound by exploiting the fact that

every Gaussian channel T can be decomposed as T � T1 �
T2, where T2 is a minimal noise channel [8] for which
NE � NS with X2 � X, Y2 
 Y and T1 is a classical noise
channel for which X1 � 1, Y1 � Y � Y2. Because of the
bottleneck inequality for capacities (cf. [13]) we have
Q�T� 
 Q�T2� where the latter is in the single-mode case
again given by Eq. (12) with � � detX. A lower bound is
always given by the right-hand side of Eq. (11) as calcu-
lated in [13].
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