
Noninvariance of Space- and Time-Scale Ranges under a Lorentz Transformation
and the Implications for the Study of Relativistic Interactions

J.-L. Vay*
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 16 January 2007; published 30 March 2007)

We present an analysis which shows that the ranges of space and time scales spanned by a system are
not invariant under Lorentz transformation. This implies the existence of a frame of reference which
minimizes an aggregate measure of the range of space and time scales. Such a frame is derived, for
example, for the following cases: free electron laser, laser-plasma accelerator, and particle beams
interacting with electron clouds. The implications for experimental, theoretical, and numerical studies
are discussed. The most immediate relevance is the reduction by orders of magnitude in computer
simulation run times for such systems.
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The study of the interaction of two or more ‘‘objects’’ (in
the broad sense of collections of particles, possibly includ-
ing massless particles such as photons, or wave packets)
crossing each other at relativistic velocities is common to
many areas of science and technology. This field encom-
passes all laser-matter interactions and relativistic beams
colliding with each other or interacting with matter. In
many instances, the system exhibits a disparity of space
and time scales between the crossing objects which can
span several orders of magnitude, with implications for
experimentation, theoretical, and numerical analysis.
Examples of such systems with large separations of scales
are free electron lasers [1], laser-plasma acceleration [2–
4], and high-energy particle beams interacting with elec-
tron clouds [5].

The disparity of scales sets significant constrains on
experiments where a very short particle and/or laser
beam propagates through a structure (plasma, acceler-
ator,. . .) which is orders of magnitude longer. The increase
in energy of the incident pulse, coupled to a decrease in the
pulse duration, puts increasingly challenging requirements
on the precision of apparatus alignment, time response, and
synchronism.

For the theoretical study of such systems, it is common
practice to perform a change of variable of the form fx0 �
x� vt; t0 � tg or fx0 � x; t0 � t� x=vg, where t is the
time, x is the direction of propagation of the incident
beam, and v is its speed in the laboratory frame. This
allows the study of just a ‘‘window’’ moving, respectively,
in space (time) which encompasses the ‘‘beam’’ and that
portion of the ‘‘target’’ which it is instantaneously over-
lapping. It is also recognized that the separation of scales in
space and time between the incident beam and the target
offers the opportunity for simplifying the mathematical
description of the interaction through the use of Eikonal
(sometimes referred to as ‘‘slowly varying envelope’’)
approximations. Although the simplification allows recov-
ery of many features of the physical processes at play, there
are instances where the physics that is omitted by these

models cannot be neglected, and numerical solutions on a
computer are then required. Because a wide separation of
space and time scales can impose severe limitations on the
size of the system that can be modeled (‘‘multiscale’’
problems), these usually require massively parallel com-
putations, and parametric studies of the full system are
often impossible without the use of the above-mentioned
approximations.

We will show that the use of the Lorentz transformation
fx0 � ��x� vt�; t0 � ��t� vx=c2�g (where c is the speed

of light in vacuum and � � 1=
����������������������
1� v2=c2

p
is the usual

relativistic factor) offers the opportunity of bridging dis-
parate space and time scales, the benefits of which will be
discussed and demonstrated on one example.

We begin by illustrating the effect of scale separation
under the Lorentz transformation on a very simple con-
figuration where we consider two objects with parallel
velocity vectors having, in a frame of reference F0: the
same (a) length l, (b) minimum length of interest �, and
(c) maximum frequency of interest � � 1=�; and different
speed �� � 0 and �� � 0 (denoting quantities related to
the two objects, respectively, with the subscripts� and�).
For the sake of simplicity, and for this example only, we
assume that the two objects are sufficiently rigid macro-
scopically that the total length and average velocities are
not affected during the interaction. Under these assump-
tions, the total time for the two objects to cross each other
in the frame F0 is given by T � 2l=�j�� � ��jc�, and the
ratios of the longest to smallest space/time scales are given,
respectively, by Rs � 2l=� and Rt � T=�. In a frame F
moving at speed �c in F0, we have (denoting quantities in
the moving frame with the superscript *)
 

��	 � ��	 � ��=�1� ��	�;

l�	=l � ��	=� � �=��	 � 1=
��1� ��	��;

T� � �l�� � l
�
��=
j�

�
� � �

�
�jc�;

(1)

where � � 1=
���������������
1� �2

p
.
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If we assume that � � 0 then we have ��� � ��� and
��� � ���, so that the ratios of longest to smallest space and
time scales are given in the moving frame F by

 R�s � �l�� � l
�
��=���; R�t � T�=���: (2)

From (1) and (2), we find that the dependence � of space
and time scales ratios with regard to the moving frame is
given by

 � � R�s=Rs � R�t =Rt �
1� � ��

1� ���
; (3)

with �� � ��� � ���=2. If we assume ��� 1 (velocities
of the two objects are almost equal and opposite in F0), �
simplifies to � 
 1=�1� ����, which is plotted versus �

on Fig. 1 for several values of �� � 1=
����������������
1� �2

�

q
. It varies

as 2�2 for � < �� and asymptotes to 2�2
� for � > ��.

From this, we conclude that the space and time scales
associated with each beam, which span the same range in
F0, separate from each other in a frame F moving at some
velocity �c from F0, at the rate �2 � 1=�1� �2�. Note
that this is general and applies to both particles and photons
(for example, if object 1 is made of photons, we have
�� � ��� � 1).

Figure 2 shows the space-time diagrams of two objects
crossing each other (for this example, the velocities were
such that the relativistic factor �0 � 2 for each object in
F0; but this choice is unimportant to the argument). The
two objects that are represented can be viewed as entire
uniform beams crossing each other or, perhaps more inter-
estingly, as the smallest space-time unit of interest for each.
Assuming that the two objects are identical in F0, the
corresponding space-time diagram, shown in Fig. 2(a), is
very simple, with geometrical structures at one scale only.
In the rest frame F of one of the beams, the space-time
diagram, shown in Fig. 2(b), reveals a more ‘‘complex’’
layout with very disparate space and time scales, revealing
graphically the separation of scales obtained above via
mathematical analysis. We also remark that the space-
time area covering the interaction (usually of most inter-
est), is given by the overlap of the two objects (shaded

areas on Fig. 2), which occupies a maximal fraction of the
support of the system in F0, when the disparity of scales is
minimal. Finally, we note that the diagram in Fig. 2(b) can
be representative of a short particle beam or laser pulse
propagating into a long structure, such as a free-electron
laser, a laser-plasma accelerator, or of a beam interacting
with an electron cloud in a particle accelerator, which are
considered below.

These considerations have consequences in the experi-
mental, theoretical, and numerical study of a system.
Experimentally, the study of the fundamental mechanisms
of the interactions might be greatly simplified if performed
in the frame which minimizes the range of scales. Potential
advantages are (a) the system is more compact spatially,
(b) the time of interaction is shorter, (c) the ratios between
largest to smallest space and time scales are minimized. All
of these alleviate the requirements on alignment, time
response of diagnostics, and synchronism. Theoretically,
it is common practice to study particle beams in their
‘‘rest’’ or ‘‘bucket’’ frames where the analysis can be
greatly simplified [6]. Furthermore, developments in series
(for example) around some spatial, time, frequency, or
wavelength of interest might offer different opportunities
of approximation, depending on the chosen frame of analy-
sis, which have different tradeoffs with regards to the study
of some aspects of the mechanisms at play.

The most important immediate application probably lies
in the numerical modeling of such systems. The approx-
imations used theoretically (Eikonal, ‘‘slowly varying en-
velope,’’ ‘‘quasistatic’’) are also used in numerical analysis
in order to reduce the requirements on the number of points
in space and time of the discretized system (using Eulerian
or Lagrangian methods). However, these approximations
are sometimes inappropriate and the system must be mod-
eled from first principles, but the range of the space and
time scales imposes very severe limitations. In such cases,
it may be very advantageous to perform the calculation in
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FIG. 1. � as a function of � for �� � f2; 10; 1� 102; 1�
103; 1� 104g.

 

−1.0 −0.5 0.0 0.5 1.0

−0.5

0.0

0.5

x

t

x

t

x

t

−1  0  1

−1.0

−0.5

0.0

0.5

1.0

x

t

x

t

x

t

(a)  (b)

FIG. 2. Phase-space diagrams of two identical rigid objects
crossing each other as viewed in (a) the frame of the center of
mass, (b) the rest frame of one object (solid line—object 1,
dashed line—object 2, shaded area—overlap of bodies). A
regular mesh (dotted lines), with cells resolving the smallest
space and time scales, is overlaid.
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the frame which minimizes the range of scales. Potential
complications include the modeling of internal boundaries
moving at relativistic velocities or the existence of a non-
inertial moving frame (in a case of a beam propagating in a
circular accelerator, for example). However, the depen-
dence of � on the square of � indicates that gains of orders
of magnitude are possible for relative velocities with large
�, offsetting the potential difficulties.

As a first example, let us consider one pass of a free
electron laser configuration [1] where an electron beam of
length l propagates at speed v into a wiggler consisting of
N magnet pairs of periodicity length �w and vector po-
tential Aw, with l� �w. When crossing the wiggler, the
electron beam will emit electromagnetic radiation at
the wavelength � � �w
�1� a

2
w�=�2�

2��, where aw �
eAw=�mc2�, and e and m are, respectively, the charge and
mass of the electron. The time T taken by the driver beam
to propagate through the magnets is given by T 
 N�w=v.
Finally, the ratios of the longest to smallest space/time
scales are given, respectively, by Rs � N�w=� / �2 and
Rt � T=��=c� � N�wc=��v� / �

2. Hence both ratios of
scales vary as the square of the relativistic factor � which,
for large values of �, corresponds to a large separation of
space and time scales. If we consider now the same system
in a frame moving at speed v relative to the laboratory
frame, and applying the Lorentz transformation, the quan-
tities become, in this frame, ��=� � �w=��w � � and
R�s � Rs=�2 / 1. Hence in this frame of reference, the
disparity of space and time scales vanishes [7].

As a second example, let us now consider a laser-plasma
wakefield accelerator (LPWA) scheme [2–4] where an
incident laser pulse of wavelength � and length l propa-
gates through a neutral plasma of length Lp and density n0.
The highest frequency of interest is ! � 2�c=�, while the
time of the interaction is given by T � �Lp � l�=c. The
ratios of space (time) scales are, respectively, Rs � �Lp �
l�=� and Rt � T=�2�=!� � Rs. In a frame moving at
relativistic speed v � �c relative to the laboratory frame,
we have the following (note that we make the common
assumption that the backward Raman emission can be
neglected; if not, further considerations are needed that
will be addressed elsewhere): Lp=L�p � �, ��=� � l�=l �
!=!� � ��1� ��, so that T� � �l� � L��=�c� v�, R�s �
�L�p � l��=�� � �Rs, and R�t � T�=�2�=!�� � �Rt=�1�
��, with� � �1� �� l=Lp�=�1� l=Lp�. We have� � 1
when � � 0, � / 1=�2 when �2 � Lp=l, and � 
 3

2 l=Lp
when �2 � Lp=l. Since typically, Lp � l, the ratio of
length and space scales can be considerably reduced in
the moving frame [8].

As a last example, let us consider a relativistic particle
beam of length l, positively charged, propagating at speed
�bc in a linear periodic section of an accelerator structure
of length L and periodicity � � L=n, and interacting with
electrons emitted by photoemission and/or secondary
emission at the walls of the vacuum pipe [5]. For very

short bunches l� L, the minimum (maximum) space
scales are given by the bunch (accelerator) section lengths
l and L. The minimum time scale in the laboratory frame is
given by the transit time � of an electron across the pipe
due to the beam electric field. The maximum time scale T
is given by the time taken by the beam to get across the
accelerator section and we have T � �L� l�=��bc� where
we have assumed that there are no large accelerating fields
in the section. We have then Rs � �L� l�=l and Rt � T=�.
In a frame moving at relativistic speed �c relative to the
laboratory frame, the quantities become l� � l=
��1�
��b��, L=L� � ��=� � �, and T� � �L� � l��=
���
�b�c�, so that

 R�s �
L� � l�

l�
� Rs

1� l=L� ��b
1� l=L

;

R�t � T�=�� � Rt
�b�1� l=L� ��b�

�2�1� l=L���� �b��1� ��b�
:

(4)

For ultrarelativistic beams (�b ! 1), then R�s=Rs !
R�t =Rt ! �1� �� l=L�=�1� l=L� which is the same
function � obtained for the LPWA case. The conclusion
obtained for the LPWA case thus holds here.

We illustrate (using the WARP code [10]) the dramatic
speedup which can be obtained, in a numerical simulation
of a beam of 1012 protons propagating at � � 500 (in the

 

FIG. 3 (color online). (Top) average value of the beam radius
for a thin slice taken in the middle of the beam, as a function of
its position in the laboratory frame, given for three runs: (a) no
electrons, (b) with electrons, in the laboratory frame, and
(c) with electrons, in a frame moving at � �

��������
512
p

. (Bottom)
3D snapshot of the beam and electrons from run in the moving
frame taken when the head of the beam reaches z � 4 km in the
laboratory frame [beam macroparticles are rendered as spheres
colored according to their position in r(mm); electrons are
sampled and rendered as streamlines in gold color (or gray)].
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laboratory) into a cylindrical pipe of radius R � 1 cm,
embedded into an external continuous focusing azimuthal
magnetic field B� � 0:15r, where r is the distance to the
axis of propagation. After 1 km of propagation through
vacuum, the beam encounters an initially cold background
of electrons with uniform density, which ramps linearly
over 2 km from zero to a maximum of ne � 1015 m�3, and
then remains constant for 1 km before dropping back to
zero linearly over 2 km. The beam distribution is initially
6D Gaussian with an rms transverse size 	x � 	y �
1 mm, rms length 	z � 10 cm, beta functions �x � �y �
100 m, and no momentum spread. The beam is injected
such that each slice passing through z � 0 has the above-
mentioned characteristics, initial offset xoff � 0:1	x and
velocity vy � 0:1vth, where vth is the initial transverse
thermal spread. The average value of the beam radius hri �

h
����������������
x2 � y2

p
i, for a thin slice taken in the middle of the beam,

as a function of its position in the laboratory frame, is given
in Fig. 3 (top) for three runs: (a) with no electrons, (b) with
electrons, in the laboratory frame, and (c) with electrons, in
a frame moving at � �

��������
512
p

. As the beam propagates
through the background of electrons, the interaction leads
to a type of hose instability (see bottom of Fig. 3) which is
characterized by an exponential growth of hri, followed by
saturation. As expected, the two calculations performed
with electrons led to the same results. However, due to the
different ratios of space and time scales, the Courant
condition on the motion of electrons led to very different
restrictions on the time steps: in the laboratory frame, the
calculation required over 5� 106 time steps and over a
week of clock time, running on eight 2.2 GHz Opteron
processors; while the calculation in the frame moving at
� �

��������
512
p

required only approximately 5000 time steps
and completed in less than 30 min, using the same com-
puter resources.

In conclusion, we have shown that, for a system which
contains a component of matter and/or light moving at
relativistic velocities with regard to another component,
there is a preferred frame of reference which minimizes the
ranges of space and time scales, and the ratio of maximum
to minimum space or time scales varies as the square of the
relativistic factor � associated with the speed of the mov-
ing frame. We have also shown that the large space and
time-scale separations in several systems of experimental
interest vanish in this preferred frame, and discussed new
possibilities offered by this effect for the experimental,
theoretical, and numerical study of these configurations.
We have demonstrated the effect on three examples: free
electron laser, laser-plasma acceleration, and electron

cloud interactions with high-energy beams. Furthermore,
we have recovered for each of these examples the depen-
dence on the square of the relativistic factor � which was
obtained for a simpler symmetric configuration. We note,
in particular, that the modeling of these systems using
computer simulations can benefit from orders of magnitude
reduction in run time when performed in this preferred
frame, and offered an example where a speedup of 3 orders
of magnitude was obtained.
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