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A perturbative model is studied for the tunneling of many-particle states from the ground band to the
first excited energy band, mimicking Landau-Zener decay for ultracold, spinless atoms in quasi-one-
dimensional optical lattices subjected to a tunable tilting force. The distributions of the computed
tunneling rates provide an independent and experimentally accessible signature of the regular-chaotic
transition in the strongly correlated many-body dynamics of the ground band.
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The experimental advances in atom and quantum optics
allow the experimentalist to directly study a plethora of
minimal models which have been developed to describe
usually much more complex phenomena occurring in solid
states [1–3]. Bose-Einstein condensates loaded into optical
lattices, which perfectly realize spatially periodic poten-
tials, are used, e.g., to implement the Wannier-Stark prob-
lem [4–6] as a paradigm of quantum transport where
atoms move in a tilted lattice. Until now all experiments
on the Wannier-Stark system with ultracold atoms have
been performed in a regime where atom-atom interactions
are either negligible [4] or reduce to an effective mean-
field description [5,7]. State-of-the-art setups are, however,
capable to achieve small filling factors of the order of 1
atom per lattice site [2]. Moreover, the atom-atom inter-
actions can be tuned by the transversal confinement and by
Feshbach resonances [3,8], resulting in strong interaction-
induced correlations.

The regime of strong correlations in the Wannier-Stark
system was addressed in [9,10], revealing the sensitive
dependence of the system’s dynamics on the Stark force
F. The single-band Bose-Hubbard model of [9,10] is de-
fined by the following Hamiltonian with the creation âyl;1,
annihilation âl;1, and number operators n̂l;1 for the first
band of a lattice l � 1; . . . ; L:

 

X
l

Fln̂l;1 �
J1

2
�âyl�1;1âl;1 � H:c:� �

U1

2
n̂l;1�n̂l;1 � 1�:

(1)

A transition from a regular dynamical (dominated by F) to
a quantum chaotic regime (with comparable values of J1,
U1, F) was found [9,10]. The transition was quantitatively
studied using the distribution of the spacings between next
nearest eigenenergies of the Hamiltonian (1). This analysis
[9,10] verifies that the normalized level spacings s �
�E=�E obey a Poisson [P�s� � exp��s�] and a Wigner-
Dyson (WD) [P�s� � �s�=2� exp���s2=4�] distribution in
the regular and chaotic case, respectively, [11]. P�s� and
the cumulative distribution functions (CDFs) [C�s� �R
s
0 ds

0P�s0�] are shown for typical cases in Fig. 1, where

we scanned F to emphasize the crossover between the
regular and the chaotic regime. Statistical tests are also
shown which confirm the analysis of [9,10] in a more
systematic manner [12].

As shown in [9], the strong correlations in the quantum
chaotic regime induce a fast and irreversible decay of the
Bloch oscillations, which otherwise would persist in the
ideal, noninteracting case. Therefore, the crossover be-
tween the two regimes discussed above could be measured
in experiments by observing just the mean momentum as a
function of time. Here we introduce a new, robust and
hence also experimentally accessible prediction for this
crossover. In the presence of strong interactions parame-
trized by U1, the single-band model should be extended to
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FIG. 1. (a),(b) CDF (stairs) and P�s� (stairs in insets) for N �
5 atoms, L � 8, lattice depth V � 10 recoil energies (fixing
J1 � 0:038), U1 � 0:032, F ’ 0:063 (a) and 0.021 (b), with WD
(solid line) and Poisson distributions (dashed line). (c) �2 test
with values close to zero for good WD statistics. The dashed line
marks the transition to quantum chaos as F is tuned. (d) Variance
of the number of levels in intervals of length dE (with normal-
ized mean spacing), for the cases of (a) (squares) and (b)
(circles), with the random matrix predictions for Poisson (dashed
line) and WD (solid line) [11].
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allow for interband transitions [13], as recently realized at
F � 0 in experiments with fermionic interacting atoms [3].
Instead of using a numerically hardly tractable complete
many-bands model, we introduce a perturbative decay of
the many-particles modes in the ground band to a second
energy band. Our novel approach to study the Landau-
Zener–like tunneling between the first and the second
band [1,5,7,14,15] leads to predictions for the expected
decay rates and their statistical distributions. As we will
show, the latter are drastically affected by the dynamics in
the ground band, and they therefore provide a measurable
witness for the regular-chaotic transition.

We first derive the individual decay rates of the domi-
nating interband coupling channels. These decay rates will
serve to effectively open the single-band model (1) for
mimicking losses arising from the interband coupling.
Our analysis starts from the following ‘‘unperturbed’’
Hamiltonian for the first two bands:

 H0 �
XL
l�1

�
"1n̂l;1 � "2n̂l;2 �

J2

2
�âl�1;2

yâl;2 � H:c:�

� Fl�n̂l;1 � n̂l;2� �
U1

2
n̂l;1�n̂l;1 � 1�

�
: (2)

For a moment, we neglect the hopping in the lower band,
where the single-particle Wannier functions [14] are more
localized than in the upper band. In the latter we neglect the
interactions, since initially only a few particles populate
the excited levels. A closer analysis of the full two-bands
system [12] shows that there are two dominating mecha-
nisms that promote particles to the second band. The first
one is a single-particle dipole coupling arising from the
force term:

 H1 � FD
X
l

�âl;2
yâl;1 � âl;1

yâl;2�; (3)

where D depends only on the lattice depth V (measured in
recoil energies according to the definition in [7]). The
second one is a many-body effect, describing two particles
of the first band entering the second band together:

 H2 �
U�
2

XL
l�1

�âl;2
yâl;2

yâl;1âl;1 � �1$ 2�	: (4)

The cross-band interaction is characterized by the parame-
ter U� � ~as

R
dx�2

1�
2
2 ’ 0:5U1 (for V � 3; . . . ; 10) [12],

for U1 � ~as
R
dx�4

1, with renormalized scattering length
~as [8,12] and the Wannier functions �1;2 localized in each
well for the first or second band. To justify the following
perturbative approach, it is crucial to realize that the terms
(3) and (4) must be small compared with the band gap � �
"2 � "1 [not necessarily small with respect to the single-
band terms in (1)], and indeed FD, U�, U1 
 � for the
parameters considered here.

For the first perturbation, the decay channel of a given
unperturbed Fock state labeled jbi (with a total number of

atoms N and nh atoms in an arbitrary well h) is

 jb;Ni � jvaci ! jb0;N � 1i � jwi; n0h � nh � 1:

(5)

Here, jwi �
P
�1
m��1 J m�w�jJ2j=F�â

y
m;2jvaci is the single-

particle eigenstate for the Wannier-Stark problem, local-
ized around the site w in the second band, with the Bessel
function of the first kind J m�x� [14].

The expectation value of (3) for jb;Ni of the first band,
equal to the first-order �E�b�, is zero because the operator
does not conserve the number of particles within the bands.
The decay width at first order is given by the matrix
element of the perturbation between the initial and final
state according to Fermi’s golden rule, and only the first
term in (3) gives a nonzero contribution [12]:
 

hkjhb0j
XL
l�1

âl;2
yâl;1jbijvaci �

XL
l�1

J l�w�jJ2j=F���n
0
l; nl� 1�

�
�����
nl
p Y

m�l

��n0m;nm�: (6)

The ���; �� functions act as a selection rule for the Fock
states that are coupled by the perturbation. The tunneling
mechanism does not include any income of energy from an
external source, so the initial and final energies E0�b� �
hvacjhbjH0jbijvaci and E0�b

0; w� � hwjhb0jH0jb
0ijwi, re-

spectively, must be equal as required by the golden rule.
The condition on the energy conservation is, however,
relaxed to account for the uncertainty �E�b� of the un-
perturbed energy levels of the initial and final states in the
lower band arising from the hopping in this band initially
neglected in (2). A detailed derivation is given in [12], and
here we only state the result:

 �E�b� � 2��J1=2�2
X
b0

�E�b! b0�

� 2��J1=2�2
X
l

X
�l�1

n2
l ��nl��l � 1; nl�: (7)

The level density ��E; b� around the unperturbed energy
E0�b� of a Fock state jbi is then approximated by a rect-
angular profile, of width �E�b� and unit area: ��E; b� �
�fjE� E0�b�j � �E�b�=2g=�E�b�. The relaxed energy
conservation rule selects from (5) the set K of permitted
decay channels (h; w) parametrized by the two indices h;w
such that

 E0�b0;w��E0�b����F�h�w��U1�nh�1�

2

�
�

�E�b���E�b0�
2

;
�E�b���E�b0�

2

�
:

(8)

Hence the energy � required to promote a particle to the
second band is supplied by the decrease of the interaction
( / U1) and by the work of the force ( / F) exerted on the
promoted particle.
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The total width �1�b� for the decay via the allowed
channels K is proportional to the square of the matrix
element and to the level density ��E; b�:

 

�1�b� � 2��FD�2
X

�h;w�2K

���������J h�w

�
jJ2j

F

� �����
nh
p

��������
2

�
1

�E�b��E�b0�

�
: (9)

J m�x� significantly contributes only for jmj & jxj. If U1,
�E�b� 
 �, the energy conservation is roughly given by
j�j ’ F�h� w�. Requiring that the Bessel function in (9)
is substantially larger than zero, we obtain the inequality
j�j � jJ2j. The last condition does not depend on F, since
a twofold effect is at work: a stronger force produces a
larger energy gain when a particle moves along the lattice,
but the extension jJ2=Fj of the single-particle state shrinks.
Therefore, increasing F results in an increased energy
matching and a strongly reduced ‘‘geometrical’’ matching.
For 3< V < 26, we have j�j � jJ2j> 1:0 [12], such that
the energy matching cannot be realized by just tuning the
lattice depth. The decay can, however, be activated by an
increase of the interactions, which can be experimentally
achieved by acting on the transversal confining potential of
a quasi-one-dimensional lattice, or by a Feshbach reso-
nance [8]. In the calculations presented below, we aug-
mented U1 used in [9,10] by a factor of order 10, and as
noted in the introduction, a similar increase of the interac-
tion strength was used in the experiment to promote fer-
mions to higher bands [3], in close analogy to the here-
described field- and interaction-induced interband cou-
pling of bosons.

The second term (4) is treated in a similar way, with the
difference that two particles are promoted to the second
band, and the position of the second single-particle state
jw0i is an additional degree of freedom for the transition.
The decay channels are

 jb; Ni � jvaci ! jb0; N � 2i � jw;w0i; n0h � nh � 2:

(10)

The energy matching selects a set K of decay channels,
parametrized by the three site indices h, w, w0:

 

�h; w;w0� 2 K such that

E0�b
0; w; w0� � E0�b� � 2�� F�2h� w� w0�

�U1�2nh � 3�

2

�
�

�E�b� ��E�b0�
2

;
�E�b� � �E�b0�

2

�
: (11)

The computation of the matrix element yields [12]:

 

�2�b� � 2�
�
U�
2

�
2 X
�h;w;w0�2K

���������J h�w

�
jJ2j

F

�
J h�w0

�
jJ2j

F

���������
2

� 4nh�nh � 1�
1

�E�b��E�b0�

�
: (12)

With respect to (9), the additional degree of freedom w0

results in a summation over all possible values of w� w0.
This follows from the possibility to conserve the energy
even if a particle is pushed far, if the other particle is
pushed almost equally far in the opposite direction. Since
the decay widths in (12) depend on the product of two
(rapidly decaying) Bessel functions—again a geometrical
matching condition—we apply the truncation jw� w0j �
jJ2=Fj, to reduce the formula to a finite form.

We can now compute the total width �F�b� � �1�b� �
�2�b� defined by the two analyzed coupling processes for
each basis state jbi of the single-band problem given in (1).
The �F�b� are inserted as complex potentials in the diago-
nal of the single-band Hamiltonian matrix. After a gauge
transform that recovers the translational invariance of the
problem (see [10,12] for details), the latter matrix is used to
compute the evolution operator over one Bloch period TB,
which is finally diagonalized to obtain its eigenphases
exp��iEjTB�. Along with the statistics of the level spac-
ings defined by RefEjg, Figs. 2 and 3 analyze the statistical
distributions of the tunneling rates �j � �2 ImfEjg for
some paradigmatic cases. All rates are much smaller than
unity, which a posteriori is fully consistent with our per-
turbative approach.
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FIG. 2 (color online). (a),(c),(e) CDF from RefEjg (stairs),
together with WD (solid line) and Poisson predictions (dashed
line). (b),(d),(f) Distributions of the logarithm of the rates. In
(a),(b), (c),(d), (e),(f), F ’ 0:17, 0.31, 0.47, respectively, with
�N;L� � �7; 6�, V � 3, U1 � 0:2 (fixing U� ’ 0:1). In the regu-
lar regime (f), a log-normal distribution (dotted line) well fits the
data, with a scaling P��� / ��x for the largest � [dashed line in
the inset of (f) with x � 1]. In the chaotic case, a global power-
law behavior with x � 2 is found [dashed line in the inset of (b)].
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To observe what happens at the regular-chaotic transi-
tion (cf. Fig. 1), we scan F in Fig. 2, and as F increases, the
average decay increases by orders of magnitude, while the
distributions broaden. The large increase of the rates is due
to an improved energy matching, when F supplies the
necessary energy to promote particles to the second
band. For the parameters of Fig. 2, the single-particle
Landau-Zener formula [14] gives �LZ � �F=2���
exp���2�2=�8F�	 � 10�23, 10�12, 10�8 for 2(b), 2(d),
and 2(f). This huge variation, typical of semiclassical
formulas, implies that there are possibly parameters for
which our results are comparable to the single-particle
prediction, but, in general, the many-particle effects cannot
be neglected. Moreover, mean-field treatments of the
Landau-Zener tunneling at best predict a shift of �
[7,15], but cannot account for their distributions.

In the chaotic regime, the Fock states are strongly mixed
by the dynamics [9,10,12] and a fast decaying Fock state
can act as a privileged decay channel for many eigenstates.
Many states then share similar rates, leading to thinner
distributions. Therefore, the thinner distribution of
Fig. 2(b) is a direct signature of the chaotic dynamics
evidenced in 2(a), as compared with the regular case in
2(e) and 2(f). In Fig. 2(f), we found a good agreement with
the expected log-normal distribution of decay rates [16] (or
of the similarly behaving conductance [17]) in the regular
regime. There the system shows nearly perfect Bloch
oscillations [9], and the motion of the atoms is localized
along the lattice [14]. We can even detect a qualitative
crossover to a power law P��� / ��1 in the right tail of the
distribution, as predicted from localization theory
[16,18,19]. The distributions in Figs. 2(b) and 3 follow
the expected power law for open quantum chaotic systems
in the diffusive regime [18]. The exponents x are, however,

nonuniversal and depend on the opening of the system. In
our case, the decay channels are defined by the interband
coupling, which in a sense attaches ‘‘leads’’ to all lattice
sites within the sample. Going along with the regular-to-
chaotic transition in the lower band of our model [from
Fig. 2(f) and 2(b), or to Fig. 3] the � distributions trans-
form from a log normal to a power law with x � 2, in close
analogy to the transition from Anderson-localized to dif-
fusive dynamics in open disordered systems [18,20].

In summary, our perturbative opening of the single-band
Wannier-Stark system allows one to study Landau-Zener–
like interband tunneling within a many-body description of
the dynamics of ultracold atoms. The statistical character-
ization of the tunneling rates (mean values and form of the
distributions) provides clear and robust signatures of the
regular-to-chaotic transition for future experiments. A
more detailed analysis of the interband coupling in a full-
blown model, in which at least two bands are completely
included, calls for huge computational resources to access
the complete quantum spectra. Nonetheless, our results are
a first step in the direction of studies for which ‘‘horizon-
tal’’ and ‘‘vertical’’ quantum transport along the lattice are
simultaneously present and influence each other in a com-
plex manner.
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[3] M. Köhl et al., Phys. Rev. Lett. 94, 080403 (2005).
[4] M. BenDahan et al., Phys. Rev. Lett. 76, 4508 (1996);

S. R. Wilkinson et al., ibid. 76, 4512 (1996); B. P.
Anderson et al., Science 282, 1686 (1998).

[5] O. Morsch et al., Phys. Rev. Lett. 87, 140402 (2001).
[6] G. Roati et al., Phys. Rev. Lett. 92, 230402 (2004).
[7] S. Wimberger et al., Phys. Rev. A 72, 063610 (2005).
[8] T. Bergeman et al., Phys. Rev. Lett. 91, 163201 (2003).
[9] A. Buchleitner et al., Phys. Rev. Lett. 91, 253002 (2003).

[10] A. R. Kolovsky et al., Phys. Rev. E 68, 056213 (2003).
[11] M. L. Mehta, Random Matrices and the Statistical Theory

of Energy Levels (Academic, New York, 1991).
[12] A. Tomadin, Master’s thesis, Università di Pisa, 2006.
[13] V. W. Scarola et al., Phys. Rev. Lett. 95, 033003 (2005).
[14] M. Glück et al., Phys. Rep. 366, 103 (2002).
[15] B. Wu et al., Phys. Rev. A 61, 023402 (2000); O. Zobay

et al., ibid. 61, 033603 (2000); S. Wimberger et al.,
J. Phys. B 39, 729 (2006).

[16] M. Terraneo et al., Eur. Phys. J. B 18, 303 (2000).
[17] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[18] T. Kottos, J. Phys. A 38, 10 761 (2005).
[19] G. Casati et al., Phys. Rev. Lett. 82, 524 (1999); S.

Wimberger et al., ibid. 89, 263601 (2002).
[20] S. Wimberger et al., J. Phys. A 34, 7181 (2001).

 

-12 -11 -10 -9 -8

0
0.2
0.4
0.6

0.8
1

P
(l

og
10

Γ)

-5.5 -5 -4.5 -4

log
10

Γ

0

1

2

3

4

10
-5

10
-4

10
-3

10
-2

Γ

10
0

10
2

10
4

P(
Γ)

10
-10

10
-9

10
6

10
8

10
10a) b)

c) d)

FIG. 3 (color online). (a),(c) Rate distributions in the chaotic
regime with F ’ 0:17, U1 � 0:2 (U� ’ 0:1), together with the
corresponding unscaled P��� in (b),(d). In (a),(b) �N;L� �
�7; 6�, V � 4, and in (c),(d) �N;L� � �9; 8�, V � 3. Power laws
P��� / ��x are found with x � 2 [dashed lines in (b),(d)].
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