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A single flexible polymer in strong sedimentation fields is investigated using hydrodynamic simulations
and scaling arguments. For short chains and small fields compaction is observed. For elevated fields or
long chains the chain stretches and the sedimentation coefficient decreases, in agreement with ultracen-
trifuge experiments on linear as well as circular DNA. For very large fields a tadpole forms consisting of a
compact leading head and a trailing stretched tail.
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Analytical ultracentrifugation has become a widespread
tool for the characterization and separation of biomole-
cules [1,2]. In a sedimentation velocity experiment the
moving boundary of the investigated substance with time
is recorded to obtain the sedimentation coefficient S (de-
fined as the radial velocity divided by the centrifugal force)
[1]. In a sufficiently dilute solution, interactions between
macromolecules are negligible, such that mass and con-
formation alone determine S. Early on, it has been shown
that dilute solutions of long DNA (>108 Da � 105 base
pairs) exhibit a decrease of S with increasing rotor speed
[3,4]. This sedimentation anomaly can be explained by
inhomogeneous friction in the chain [5,6]: The coil interior
is hydrodynamically shielded while the chain ends, which
on average are located at the coil exterior, receive more
drag; consequently, the chain ends lag behind, the coil is
stretched, the hydrodynamic radius increases, and the sedi-
mentation coefficient goes down. Zimm’s theory correctly
predicts the functional dependence of S on rotor speed and
molecular mass, but the spectacular quantitative agreement
between theory and experiments [5] was later claimed to be
due to a glitch in the calculations [4]. More seriously,
Zimm’s preaveraging approximation (PAA) predicts a
null effect for polymer rings, in contrast to experiments
on DNA loops [7].

In this Letter we use hydrodynamic simulations to study
linear and circular sedimenting polymers. For short self-
avoiding chains, compaction is caused by hydrodynamic
chain recirculation. For longer chains and increasing sedi-
mentation fields the chain elongates and consists of a
compact (leading) part and a stretched (trailing) part, re-
sembling a tadpole for very large fields. The observed be-
havior is similar for linear and circular polymers, in agree-
ment with experiments. Scaling descriptions for chain
radius and mobility are presented and compare favorably
with simulations and experiments. By implementing
Zimm’s PAA in the simulations we can recover his results;
interestingly, we find the hydrodynamic PAA to be a less
serious approximation than the neglect of self-avoidance.

Modeling the polymer by N spheres, the velocity of the
ith monomer follows from the Langevin equation as

 

_r i�t� �
XN
j�1

�ij � ��rrjU�frkg� �Gêz	 � �i�t�; (1)

whereG is a constant sedimentation force in the z direction
acting on each monomer, and �i a vectorial Gaussian
random force with zero mean providing coupling to a
heat bath and correlated according to the fluctuation-
dissipation theorem as h�i�t�
�j�t

0�i�2kBT��t� t
0��ij.

Hydrodynamic interactions between monomers i and j are
included via the mobility tensor �ij. In most simulations
we use the position-dependent Rotne-Prager tensor [8]; as
a test we perform some simulations using Zimm’s PAA
given by�ij � �6�

3ji� jj��1=2I=�2�a� [9]. The mobility
self-part is given by the Stokes mobility of a sphere with
radius a, �ii � I=�6��a� � I�0, where I is the 3� 3
unit matrix and � the solvent viscosity (water). The inter-
action potential U is in most simulations
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and it consists of a truncated Lennard-Jones potential to
account for chain self-avoidance and springs between
nearest neighbors. ��x� is the Heavyside step function,
and rij � jri � rjj. Choosing a stretching modulus � 
400G is sufficient to approximate the freely-jointed chain
model (FJC) with essentially constant bond length. For a
self-avoiding (SA) chain, the repulsive potential strength is
chosen as �LJ � kBT, for an ideal chain �LJ � 0. For a
Gaussian chain, the second line in Eq. (2) is replaced byP
�r2

ii�1=�4a� with a harmonic spring stiffness � �
3kBT=�2a� which gives an equilibrium mean-squared
bond length of 2a.

For simulations, Eq. (1) is discretized with a time
step � and all variables are rescaled by a and kBT as ~� �
�a=kBT, ~G � Ga=kBT, and ~� � ��0kBT=a

2. Depending
on chain length and field strength, we choose ~� between
3� 10�5 and 0.005. In the simulations (consisting of up to
108 steps) the chain is first equilibrated with a slowly
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increasing field before averages are taken. Errors are cal-
culated using block averaging and only shown if larger
than the symbol size. The sedimentation coefficient is S �P
ih _rii=�NG� and depends strongly on the chain conforma-

tion if hydrodynamics are properly included.
We first discuss a linear SA FJC with full hydrodynamic

interactions (HI). Figure 1(a) shows S=�0 over four deca-
des of ~G for chains with N � 10 to N � 200 monomers.
Except for the two shortest chains, S is nonmonotonic: For
small fields S increases slightly, which is caused by a chain
compaction. This is demonstrated in Fig. 1(b) where the
rescaled radius of gyration Rg=aN�, defined as Rg �
�
P
ih�ri �RM�

2i=N�1=2 (whereRM �
P
iri=N is the center

of mass) exhibits a slight decrease for small ~G (in equilib-
rium, one expects Rg � N� with � � 3=5 [9]). After pass-
ing through a maximum S drops considerably until it
saturates at a much lower value than for the unperturbed
(G! 0) chain. This is paralleled by a sharp increase in Rg,
which defines a critical field ~G? at which a chain starts to
unfold. Interestingly, the curve S for the longest chain
(N � 200) forms an upper envelope for the other chain
lengths, i.e., longer means faster. The progressive chain
stretching as ~G or N grows is visualized by snapshots in
Fig. 2.

We now present a blob argument for the compaction of a
sedimenting chain. In the nondraining regime, a chain of
radius R sediments with a velocity given by Stokes’ law
v��0GNa=R [9]. The hydrodynamic drag acts primarily
on peripheral chain segments, inducing vortexlike mono-
mer recirculation similar to the flow pattern in a smoke
ring. We assume the typical internal velocity to scale as v,
like the overall coil sedimentation speed. We partition the
chain into blobs consisting of gmonomers and unperturbed
size �� ag�. The assumption of equilibrium scaling in-
side blobs holds as long as the recirculation time 	V � �=v
is larger than the blob relaxation time 	R, the blob size thus
follows from 	R � 	V . Neglecting entanglement effects,
one has 	R � �

3=�a�0kBT�, which leads to �2 �
kBTR=�GN�. Beyond the blob size, the chain cannot relax
and is condensed by the recirculation shear, suggesting
compact scaling R� ��N=g�1=3. Putting everything to-

gether, the chain radius scales as R=a� N
 ~G� with 
 �
�1� ��=�3�� 1� and � � �1� 3��=�3�� 1�. For small
fields ~G< ~Gcom � N�1��, the blob size is larger than the
chain radius, g > N, and the chain conformation is unper-
turbed by sedimentation; for larger fields ~G> ~Gcom com-
paction is predicted. From the simulation results for S and
Rg in Fig. 1 slight compaction is seen for short chains and
small fields only; otherwise, the overall chain size is domi-
nated by the stretched tail and compaction is limited to the
head region.

We now discuss the mechanism for stretching and start
with the strong-stretching regime (i.e., very large driving
field G). As seen from the simulation snap shot for ~G � 1
in Fig. 2(a), the chain adopts a ‘‘tadpole’’ configuration
consisting of a compact head of Nh monomers followed by
a straight tail of Nt � N � Nh monomers (similar to con-
formations observed when a collapsed chain is stretched by
an external force acting on one end only [10]). From the
tail stretching it follows that the head pulls the tail with
some force Fs, which incidentally also orients the tadpole.
Neglecting hydrodynamic interactions between head and
tail (which contribute higher-order corrections), the head

 

FIG. 1. (a) Sedimentation coefficient S=�0 of a self-avoiding linear FJC for several monomer numbers N as a function of
sedimenting field ~G � Ga=kBT. The N � 200 results (broken line) give an upper envelope. (b) Reduced radius of gyration
Rg=aN

� for the same parameters using � � 3=5, showing an initial chain compaction and (for larger G) a chain stretching.
(c) Scaling plot of the low-field data from (a); the solid line is given by SN��1=�0 � 1:63� 2:77� 10�6 ~G2N2�2�.

 

FIG. 2. (a) Typical chain configurations for N � 100 at differ-
ent force strengths. The force points upwards. (b) Simulation
snapshots at ~G � 0:1 for N � 140 and 200.
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velocity is vh � �GNh � Fs��0a=Rh � �GNh �
Fs�N

��
h �0. Using the mobility of a straight cylinder (i.e.,

the tail is strongly stretched), the tail velocity is vt �
�GNt � Fs��0�lnNt � 1=2�=Nt [9]. The stretching force
Fs is (in the absence of attractive monomer-monomer
interactions) solely produced by internal friction in the
recirculating head. Since it maximally scales as Fs �
GNh, it can be neglected in the above velocity expressions.
In the stationary state head and tail velocities are equal,
vh � vt, leading to a logarithmically small head size Nh �
�lnN�1=�1��� and a sedimentation velocity of

 S=�0 � v=G�0 � �3=2� lnN: (3)

The hydrodynamic stability of this tadpole configuration
follows by considering small perturbations: assuming the
tadpole to be oriented with the head in front and a trailing
tail, a head that is slightly smaller than in the stationary
state will slow down and push against the tail and thus grow
back to its equilibrium size (and conversely). To directly
test the large-field result, Eq. (3), we perform zero-
temperature simulations for the SA FJC where the noise
term �i in Eq. (1) is omitted, choosing rescaled parameters
� � 200G and �LJ � Ga. The resulting sedimentation
coefficients are shown in Fig. 3(a) (circles) and compare
very well with the asymptotic result Eq. (3) (solid line).
The numerical results for finite temperature, taken from
Fig. 1(a) for constant G � 100kBT=a (triangles), approach
the scaling law for N ! 1.

Experimentally most relevant is the weak-stretching
regime (small G). Here the boundary between head and
tail is diffuse [see the snapshot forN � 100 and ~G � 0:1 in
Fig. 2(a)] and the tail is slightly perturbed into an ellipsoid
with short axes Rt and long axis Lt. As before, we equili-
brate the head velocity vh �GNh�0aR

�1
h �GN

1��
h �0

with the tail velocity vt �GNt�0aR
�1
t =�1� Lt=4Rt� for

which the mobility of an ellipsoid along its long axis is
used [11]. For small force Fs the tail stretching is har-

monic, Lt=Rt � 1� �FsRt=kT�
2. Assuming a stretching

force Fs � NhG (meaning that all monomers in the head
contribute via internal friction to Fs), a tail size ofRt � N�

t ,
and requiring that vh � vt, we obtain in the small-G
(weak-stretching) limit N=2� Nh � N

3�2� ~G2 and thus

 S=�0 � v=�0G ’ c1N1�� � c2N3�� ~G2: (4)

The N dependence of the correction factor is (with � �
0:6) in accord with experiments, where a scaling propor-
tional to N3:65G2 is observed [3], and for the longest chains
also in satisfactory agreement with an asymptotic fit to the
simulation data in Fig. 1(c), which determines the coeffi-
cients as c1 � 1:63 and c2 � 2:77� 10�6. This lends
credibility to our scaling assumption Fs �GNh.

In the intermediate stretching regime, 1=Lt < Fs=kBT <
1=a, the tail is stretched but not fully extended, i.e., Lt �
NtF

1=��1
s [12]. Using the scaling assumption Fs �GNh

and the results for Nh in the strong and weak-stretching
regimes, this translates into a sedimentation field range
~G?? < ~G< ~G??? with ~G?? � N�1�� and ~G??? �

�lnN�1=���1�. A modified scaling calculation yields a sedi-
mentation coefficient S=�0 � ~G���1�=���1��lnN��=���1� in
good agreement with simulations [13], which comple-
ments the results in Eqs. (3) and (4). The actual onset of
chain unfolding, which is determined from the maximum
in S or the minimum in Rg, is shown in Fig. 3(b) and
follows in the restricted available data range a scaling with
~G? � N�2, at odds with the simulation observation that
slight compaction sets in before chains stretch, i.e. ~Gcom <
~G?. This conflict can be resolved by assuming that the
threshold for compaction ~Gcom is lower than suggested by
our scaling result ~Gcom � N�1�� (which is plausible since
it neglects entanglement effects) or that ~G? scales differ-
ently so that a range ~Gcom < ~G< ~G? with compact chains
exists. Alternatively, compaction of the chain as a whole
could be observable only for short chains and always
preempted by chain unfolding for long chains (as sug-
gested by DNA sedimentation experiments). Experiments
with long chains at weak sedimenting fields could clarify
this issue. Note that local compaction in the head region is
suggested by the scaling results and in fact seen in the
simulations. Tadpole orientation and conformational
stability require the torque M� FsLt to be larger than
kBT. From Fs �GNh, Lt � N�

t , and Nt � Nh � N this is
equivalent to ~G> ~G?? � N�1�� and coincides with the
crossover between weak and intermediate stretching.

To estimate the importance of hydrodynamics, we also
perform simulations using the PAA; since the velocity then
is independent of the conformation, we calculate the sedi-
mentation coefficient using the hydrodynamic tensor as
�S=�0 � 3a

P
ijh1=rij � z

2
ij=r

3
iji=�4N�, where the brackets

represent the configurational average at finite field [5]. In
Fig. 4(a) we compare �S=�0 for three cases: ideal Gaussian
(circles), self-avoiding Gaussian (squares), and self-
avoiding FJC (triangles), each for both full hydrodynamics

 

FIG. 3. (a) Zero (circles) and finite-temperature simulations
(Ga � 100kBT, triangles) compared with the asymptotic scaling
law Eq. (3) S=�0 � �3=2� lnN (solid line). (b) Unfolding field
strength ~G?, defined graphically in Fig. 1(a) and 1(b) from the
maximum of S (triangles) and the minimum of Rg (circles). The
solid line is a heuristic fit with ~G? � 670N�2, the broken line
denotes ~G? � N�1��.
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(HI, open symbols) and PAA (filled symbols), for a chain
length N � 40 and divided by the zero-field limit �S0 �
�S�G! 0�. Zimm’s PAA calculation at small fields for an
ideal Gaussian chain [5] is included (solid line) and de-
scribes quantitatively both the HI and PAA simulations of
an ideal Gaussian chain (circles). Surprisingly, self-
avoidance effects drastically change the simulation results,
even if preaveraging is used. The conclusion is that self-
avoidance is an important effect for strongly sedimenting
chains. Interestingly, the conformations obtained within
PAA are wrong even when a SA-FJC model is used, as
demonstrated in Fig. 4(c), where a snapshot shows a con-
figuration where both tails are trailing and the symmetry
breaking between the two tails is not obtained.

The preaveraging approach yields no sedimentation
anomaly for circular chains [5,7]. Experimentally, on the
other hand, circular DNA exhibits a sedimentation con-
stant dependence similar to linear DNAwith half the length
[7], which is relevant in the context of DNA supercoiling
[14]. In Fig. 4(b) we compare S=�0 for circular chains of
different lengths with the result for a linear chain withN �
100 (filled circles). The circular N � 200 chain shows the
onset of unfolding at a similar force as the linear N � 100
chain. This becomes clear when looking at snapshots at
driving force ~G � 1 in Fig. 4(c): The circular chain with
N � 200 (to the right) forms a tadpole similar in size and
shape to the linear N � 100 chain (in the middle) except
that the tail is double stranded, which explains the experi-
mental finding.

To get a feel for the experimental relevance, we consider
a 180 kbp DNA strand in a centrifuge with radius x �
0:05 m spinning at 60!=2� � 50 000 rpm [4]. For an
effective monomer with radius a � 1 nm, corresponding
massm0 of six base pairs, and a buoyancy correction factor
of 1� �w=�DNA � 0:436, where �w and �DNA are the
densities of water and DNA, we obtain a rescaled field of
~G � m0�1� �w=�DNA�x!

2a=kBT � 10�6, similar to the
theoretically predicted critical unfolding field given by
~G? � 10�6 [using N � 30 000 and ~G? � 670N�2, see

Fig. 3(b)]. Indeed, the onset of chain unfolding is obtained
in typical ultracentrifuge experiments. A quantitative pre-
diction of the DNA sedimentation anomaly [4], however, is
at present not feasible, since the nonuniversal dependence
on the ratio of chain diameter and persistence length is not
included. A more direct comparison might be possible with
flexible synthetic chains, where this complication is absent.
The hydrodynamic compaction predicted here for short
chains might have been observed with certain proteins
that undergo conformational changes under sedimentation
[15].
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FIG. 4. (a) Relative approximate sedimentation coefficient �S= �S0 for a linear N � 40 chain modeled as a SA FJC (squares), SA
Gaussian (triangles) and ideal Gaussian chain (circles). Open symbols include full hydrodynamics (HI), filled ones use preaveraging
(PAA). The solid line is Zimm’s PAA calculation for an ideal Gaussian chain [5]. (b) Sedimentation coefficient of circular (open
symbols) and linear chains (closed symbols), all for SA FJC with full HI. (c) Snapshots, from left to right: N � 100 linear SA FJC with
PAA, same chain with full HI, and N � 200 circular SA FJC with full HI, all at ~G � 1.
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