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We present analysis of the interacting quantum wire problem in the presence of magnetic field and spin-
orbit interaction. We show that an interesting interplay of Zeeman and spin-orbit terms, facilitated by the
electron-electron interaction, results in the spin-density wave state when the magnetic field and spin-orbit
axes are orthogonal. This strongly affects charge transport through the wire: With the spin-density wave
stabilized, single-particle backscattering off a nonmagnetic impurity becomes irrelevant. The sensitivity
of the effect to the direction of the magnetic field can be used for experimental verification of this
proposal.
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Introduction.—The active current interest in devising
schemes to manipulate electron spin has led to several
interesting developments [1–3]. Most approaches rely on
spin-orbit interaction, which couples a particle’s momen-
tum and spin, in order to achieve this goal. While signifi-
cant progress has been made in clarifying the role of spin-
orbit (SO) interaction, mostly of the Rashba type [4], on
the electric and spin transport by noninteracting electrons
during the past few years [5], our understanding of the
combined effect of SO and electron-electron interactions is
still limited [6–9].

Here we study the combined effect of (Zeeman) mag-
netic field and spin-orbit interaction in a single-channel
interacting quantum wire. This setup allows for the well-
controlled theoretical analysis of the interplay between
broken time reversal T (by applied magnetic field) and
inversion P (by spin-orbit interaction) symmetries and
electron-electron interactions. The problem is formulated
as follows. We consider a single-channel ballistic quantum
wire, corresponding to the two-terminal conductanceG0 �
2e2=h. The applied magnetic field creates two spin-split
subbands, the wave functions of which are given by the
standard orthogonal pair h"j � �1; 0� and h#j � �0; 1� (the
orbital effect of the field is neglected). It reduces spin-
rotational symmetry to U�1�, rotations about the �̂z axis.
Next we add weak spin-orbit interaction H�1d�R � �Rpy�̂x,
which is obtained by electrostatic gating of two-
dimensional electron gas with Rashba SO interaction [3].
(Corrections to this form, due to the omitted ‘‘transverse’’
piece �Rpx�y and virtual transitions to the higher, unoc-
cupied, subbands, can be taken into account [6] but are
irrelevant for our purposes here.) Observe that H�1d�R breaks
spatial inversion (y! �y) and U�1� spin symmetry
��̂z; H

�1d�
R � � 0. The major consequence of this is the open-

ing of a new, intersubband Cooper scattering channel
[10,11]. In this process, a pair of electrons with opposite
momenta in one subband is scattered (‘‘tunnels’’) into a
similar pair in the other subband; see Fig. 1. Note that this
process requires spin nonconservation (i.e., �R � 0), men-
tioned above, as it scatters two electrons with (almost)

‘‘up’’ spins into a pair with (almost) ‘‘down’’ spins (and
vice versa). This simple observation is the key to our
analysis: Its derivation and consequences are presented
below.

Technical formulation.—The single-particle Hamilton-
ian, describing the scenario outlined above, reads

 H0 �
p2

2m
���

1

2
g�BB�z � �Rp�x; (1)

where momentum along the wire (y axis) is now denoted as
p. The eigenstates  ��y� � eipy���p� (� � �) are easily
expressed in terms of the momentum-dependent spinors
[2,12]

 ���p� �
cos��p=2�
�sin��p=2�

� �
; ���p� �

sin��p=2�
cos��p=2�

� �
; (2)

which describe the momentum-dependent orientation of
electron’s spin in the ẑ� x̂ plane. The rotation is specified
by the angle �p � arctan�2�Rp=g�BB�. Note that the left-
(right-) moving particle experiences clockwise (counter-
clockwise) rotation of its spin away from up-spin (� � �)
and down-spin (� � �) orientations at the subband’s cen-
ter p � 0; see Fig. 1. The corresponding eigenvalues E� �

�p2=2m� ���
���������������������������������������������
��Rp�2 � �g�BB=2�2

p
describe two non-

intersecting branches. The gap between them is again

 

FIG. 1 (color online). Occupied subbands E� of Eq. (1). The
arrows illustrate spin polarization in different subbands. The
dashed (dotted) lines indicate exchange (direct) Cooper scatter-
ing processes.
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momentum-dependent and is minimal at p � 0, where it
reduces to the Zeeman energy g�BB.

We consider the situation when the Fermi energy EF �
vFpF, where pF (vF) are Fermi momentum (velocity),
crosses both branches, as shown in Fig. 1, resulting in
four Fermi points	p� in the wire. To describe low-energy
excitations of the interacting wire, we project a single-
particle spin-s state �s (s �"; # ) onto the two-dimensional
space spanned by  � eigenstates:

 �s�y� �
X
���

h���p��jsieip�yR� � h����p��jsie�ip�yL�:

(3)

Operators R� (L�) represent slow degrees of freedom: right
(left) movers in the vicinity of�p� (�p�) Fermi points of
the �th subband, respectively. In this representation, the
interaction term Hint �

1
2

P
s;s0
R
dydy0U�y� y0��ys �y�


�ys0 �y
0��s0 �y

0��s�y� reduces to the sum of intra- and inter-
subband scattering processes [11]. Keeping only low-
energy momentum-conserving ones, the intersubband
terms include, in the notation of Ref. [11], forward,
exchange-backscattering, and Cooper processes. The
Cooper scattering represents two-particle (pair) tunneling
between the � and � subbands. It reads
 

HC�
Z
dyfU�p��p��sin2��������=2��U�p��p��


sin2��������=2�g�Ry�Ly�R�L��H:c:�: (4)

Here U�q� �
R
drU�r�eiqr is the qth Fourier component of

the electron interaction. The terms inside the brackets in
(4) represent matrix elements for two different Cooper
scatterings—direct and exchange; see Fig. 1. U�p� �
p�� describes direct scattering in which right mover R�
in the �th subband scatters into right mover R�� in the
opposite �� subband R� ! R��, while its left-moving
companion L� scatters into L��. The other possibility,
exchange Cooper scattering, involving U�p� � p��, de-
scribes right and left members of the pair scattering across:
R� ! L�� and L� ! R��. It is crucial to observe here that,
in addition to involving two different Fourier components
of the interaction potential, these two processes include
squares of single-particle overlap integrals sin2���� �
���=2�. The relative magnitude of these is easy to under-
stand in the limit of strong magnetic field and weak spin-
orbit splitting �Rp	=�g�BB� � 1, on which we concen-
trate now. As discussed in the introduction, in this limit
eigenspinors �� almost coincide with spin js �"; #i eigen-
states of the Zeeman Hamiltonian. The weak SO term,
which can be thought of as a momentum-dependent mag-
netic field, acting along the orthogonal �̂x direction,
causes spins at p� and p� Fermi points to tilt by an only
slightly different amount, resulting in a small overlap of
single-particle wave functions, proportional to the differ-
ence �pF � p� � p� � g�BB=vF. At the same time,
spins at, say, right p� and left �p� Fermi points, tilt in
opposite directions, resulting in a relatively large angle

(and bigger overlap) between them, proportional to the
sum p� � p� � 2pF. This allows us to estimate the
ratio of the two amplitudes as �U��pF�=U�2pF��

�g�BB=EF�2 � 1 and neglect the contribution of the di-
rect Cooper process in the following.

Bosonization.—We now bosonize the problem [13] with
the help of two conjugated fields ’� and ��, obeying com-
mutation relation �’��x�; ��0 �y�� � �i=2����0 �1� sgn�x�
y��. Fermions are represented as R� � 	� exp�i

����


p
�’� �

����=
���������
2
a
p

and L� � 	� exp��i
����


p
�’� � ����=

���������
2
a
p

.
Klein factors 	�, satisfying f	�; 	�0 g � 2���0 , ensure anti-
commutation of fermions from different subbands, and
a� p�1

F is a short-distance cutoff. We then transform to
convenient symmetric [’� � �’� � ’��=

���
2
p

] and anti-
symmetric [’� � �’� � ’��=

���
2
p

] combinations (and
similarly for ��=�), in terms of which the Hamiltonian of
the problem decouples into two commuting ones. As in-
dicated by notations, symmetric (antisymmetric) combina-
tions, in fact, coincide with the standard charge (spin) ones.
This is not a generic property of the problem but rather a
convenient feature of the limit �RpF � g�BB� EF
which is used in the rest of this Letter. The symmetric
(charge) part H� is purely harmonic

 H� �
1

2

Z
y

�v�
K�
�@y’��2 � vF�@y���2

�
; (5)

with stiffness K�1
� �

�����������������������������������������������������������
1� �2U�0� �U�2pF��=
vF

p
. The

antisymmetric (spin) one includes a nonlinear cosine term,
representing the Cooper process (4)
 

H��
1

2

Z
y

v�
K�
�@y’��2�vF�@y���2

�
gc
�
a�2

cos�
�������
8

p

���;

K�1
� �

������������������������������������
1�U�2pF�=
vF

q
; gc�U�2pF�

�
2�RpF
g�BB

�
2
: (6)

Renormalized velocities of these excitations follow from
v�;� � vF=K�;�. Equations (5) and (6) include H0 (1) as
well as momentum-conserving intrasubband (forward and
backscattering) and intersubband forward [ / U�0�] inter-
actions, which are encoded in the stiffnesses K�=�. Inter-
subband exchange backscattering, although momentum-
conserving, is neglected because it is strictly marginal
and small, of the order �2

R. We have also omitted the
marginal correction, small in the g�BB=EF � 1 factor,
associated with a weak dependence of subband velocities
v� on the magnetic field [14]—this is the main reason for
the equivalence of symmetric (antisymmetric) modes with
charge (spin) ones, mentioned above. Yet another simpli-
fication consists in replacing U�2p	� by U�2pF� in ex-
pressions for K�=�—this is a valid approximation for any
physical U�r�. Finally, we must keep the Cooper term in
(6), which, in spite of having a small amplitude gc, is
strictly relevant in the renormalization group (RG) sense.
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Its scaling dimension is 2=K� < 2 for repulsive interac-
tions [15].

The full argument in favor of the Cooper term’s rele-
vancy is a bit more delicate. It has to do with the irrelevant
intersubbanddirect backscattering term /gbs cos�

�������
8

p

’��
2�pFy�, omitted from (6). Note that K� � 1� gbs=2.
Backscattering decays as gbs�‘� � gbs�0�=�1� gbs�0�‘�
until the rescaled cutoff reaches a�‘� � ae‘ � 1=�pF;
see [15]. At that scale ‘ � ln�pF=�pF�� ln�EF=g�BB�,
and the strongly oscillating spin backscattering cosine
disappears from the problem (‘‘averages out’’) [15]. Spin
stiffness K� � 1� gbs�‘

�=2 stops at the value above one
[15], which implies the relevancy of the Cooper term, as
already mentioned above. In more detail, the Cooper cou-
pling constant, the evolution of which is described by the
simple @‘gc � �2� 2=K��gc, changes little from its initial

value by the time scale ‘ is reached: gc�‘� � gc�0�

�1� gbs�0�‘

�. From this point on, one is allowed to ne-
glect gbs completely and treat the Cooper scattering term
Eq. (6) as the only relevant interaction. Both gc and K�
grow under RG as ‘ is increased past ‘ and reach a strong
coupling limit when gc�‘� � vF while K� ! 2 [16].

Consequences of (6).—The flow to strong coupling
implies the change in the ground state (of the spin sec-
tor) from gapless to gapped. The resulting spin gap
can be estimated as �� ���RpF=g�BB�

2U�2pF�=
vF�K�=�2�K��1��. This gap represents an energy cost of
(massive) fluctuations ��� near the semiclassical minima
~�� � �m�

1
2�

���������

=2

p
, m 2 Z, of the � field. The physical

meaning of these minima follows from the analysis of spin
correlations. Choosing the gauge where 	"	# � i [17], we
find for the 2pF components of spin

 

Sx

Sy

Sz

0
BB@

1
CCA 2pF � �

cos�
�������
2

p

’� � 2pFy�


a

sin�
�������
2

p

���
� cos�

�������
2

p

���
sin�

�������
2

p

’��

0
B@

1
CA! � cos�

�������
2

p

’� � 2pFy�


a

	1
0
0

0
@

1
A: (7)

The limit indicated by the arrow in the above equation is somewhat symbolic, with zeros representing exponentially
decaying correlations of the corresponding spin components Sy;z. Here the ŷ component does not order because
cos�

�������
2

p

~��� � 0, and the ẑ component is disordered by strong quantum fluctuations of the dual ’� field, as dictated
by the �’; �� commutation relation. Thus, the ‘‘Cooper’’ order found here, in fact, represents spin-density-wave (SDWx)
order at momentum 2pF of the x̂ component of spin density. Observe that Sx ordering is of the quasi-long-range order type
as it involves the free charge boson ’�. As a result, spin correlations do decay with time and distance but very slowly
hSx�x�Sx�0�i � cos�2pFx�x

�K� . As K� < 1 in the interacting quantum wire, this is slower than the x�1 decay typical for a
one-dimensional Mott insulator-antiferromagnetic Heisenberg chain [13].

There is one more, very intriguing, consequence of SDWx order: suppression of 2pF charge fluctuations. Indeed, the
2pF component of the charge density operator reads, keeping the subleading (/�pF ) contribution,

 ��y�2pF � �
2


a
sin�

�������
2

p

’� � 2pFy�
�
cos�

�������
2

p

’�� �
2�RpF
g�BB

cos�
�������
2

p

���
�
! 0: (8)

The first term is standard and represents an intrasubband
contribution, while the second, involving ��, is due to the
subleading intersubband contribution, which couples 	
bands. Observe that both contributions disappear in the
SDWx phase (�� ! ~��). Since the 2pF component of
the charge density describes backscattering (p! �p) of
electrons by potential impurity, Eq. (8) implies irrelevancy
of the impurity in the spin-density wave state. The reason
for this is somewhat similar to that of backscattering
suppression in the spin Hall effect [18]: In the SDWx
phase, right and left movers within a given subband have
opposite (orthogonal) Sx components, as can be seen from
(7) and Fig. 1, which forbids intrasubband backscattering.
(In the spin Hall case, right and left movers form a Kramers
pair and backscattering is forbidden by the T symmetry
[18], which is broken here.) Figure 1 also suggests that
backscattering between right movers of the� subband and
left movers of the � one is possible: Their Sx components
are parallel. Nonetheless, such backscattering is still sup-
pressed because of the destructive interference of the two
scattering paths. Namely, the intersubband part of the 2pF

density oscillation, the bosonic form of which is given by
the second term in (8), reads �Ry�L� � R

y
�L� � H:c:� in

terms of original fermions. The crucial relative minus sign
between the two backscattering processes can be traced to
Eqs. (2) and (3) and represents the noted destructive inter-
ference. It is useful to understand this result perturbatively:
The intrasubband piece of (8) arises from fusing ’� from
the localized impurity potential [first term in (8)] with that
in H�1d�R . This explains its magnitude ( / �RpF=�pF) and
oddness under inversion (about the impurity site) P . Thus,
a potentially more relevant, but even under P , backscat-
tering process �Ry�L� � R

y
�L� � H:c:� cos�

�������
2

p

���

sin�

�������
2

p

���� (note the relative plus sign) cannot be
generated.

Although the single-particle backscattering is sup-
pressed, the two-particle one, in general, is not
[11,19,20]. By considering fluctuations ���, one indeed
generates the two-particle backscattering term / �V2=��


cos�
�������
8

p

’��. This spin-insensitive impurity affects finite-
temperature linear conductance as G� 2e2=h /
��V2=��2T4K��2 [11]. The correction is seen to become
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strong (relevant) for strongly interacting wire with K� <
1
2 ,

when the impurity cuts off charge transport completely
[21]. This leaves us with the finite window 1

2 <K� < 1,
where the impurity is irrelevant. This is an interesting, and,
to the best of our knowledge, new, addition to the Kane-
Fisher result of always relevant impurity in a single-
channel repulsive Luttinger liquid [21]. Note, however,
that our discussion assumes a fully developed SDWx phase
and, thus, implies the weak disorder potential V � �. The
complete solution requires simultaneous RG analysis of
the Cooper and impurity terms [17].

The correlated state can also be probed via tunneling
density of states (DOS) measurements. Skipping the de-
tails, which are rather similar to the calculation of DOS in
Ref. [11], we quote the result for the local DOS in the
SDWx state: ��!� / ��!����!���b, where b �
�K� � 1�2=�4K�� and � denotes the step function.
Naturally, DOS is zero for energies below the SDW gap
and is found to rise smoothly (b > 0) just above it.

The angular stability of the SDWx state can be ana-
lyzed via the angular dependence of subband disper-
sions E� in Fig. 1. Indeed, suppose that the two axes ~B
and SO are not orthogonal, and denote the angle be-
tween them as 
=2� . This will modify the SO term
in (1) to �Rp��x cos� �z sin�. The eigenvalues of the
modified Hamiltonian (1) now read E� � �p2=2m� ����������������������������������������������������������������������������������
��R cosp�2 � �12g�BB� �R sinp�2

q
and describe two

subbands (�) shifted in the opposite directions along
the momentum axis. For small , the dispersion can
be approximated as E� � ��p	 p0�

2=2m� ������������������������������������������������
��Rp�2 � �g�BB=2�2

p
. Thus, the lower (�) subband

shifts left and is centered around �p0, while the upper
(�) one shifts toward positive momenta and centers around
�p0, where p0 � m�R. This simple observation implies
that opposite-Fermi-momenta pairs in 	 subbands acquire
opposite (	p0) center-of-mass momenta. This can be pic-
tured by shifting the bands in Fig. 1 horizontally in oppo-
site directions. Thus, the two-particle Cooper tunneling
processes illustrated in Fig. 1 become momentum-
nonconserving ones. As a result, this important scattering
channel will disappear above some critical misalignment
angle , which can be estimated as follows. Cooper order
is destroyed once the misalignment cost / 2vFp0 becomes
comparable to the Cooper gap �. Estimating the latter at
K� � 2, we find:  � �RpFU�2pF�=�g�BB�

2 � 1. This
estimate shows that the found SDWx has a narrow but finite
region of angular stability and agrees fully with the results
of more detailed RG-based calculations in Ref. [17]. The
SDWx state can also be destroyed by reducing magnetic
field strength below the critical g�BBc � �RpF, even
while maintaining the orthogonal orientation (angle  �
0). This happens due to the decrease of the spin stiffness
K� below 1 [so that the scaling dimension of Cooper term
(6) exceeds 2] once the Zeeman energy becomes smaller
than the spin-orbit one [17]. This weak-field region, which

includes the B � 0 limit of (1), has been studied previously
[6,7] and contains no relevant Cooper processes.

The sensitivity of the described SDWx phase to the
mutual orientation and magnitude of the magnetic and
SO terms can be exploited in experimental searches of
the novel field-induced SDW phase of the quantum wire
with spin-orbit interaction. It appears that lateral quantum
wells at the vicinal surface of gold, which possess spin-
orbit-split and highly one-dimensional subbands [22], can
serve as a nice experimental starting point.
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