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Scaling and Universality in Rock Fracture
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We present a detailed statistical analysis of acoustic emission time series from laboratory rock fracture
obtained from different experiments on different materials including acoustic emission controlled triaxial
fracture and punch-through tests. In all considered cases, the waiting time distribution can be described by
a unique scaling function indicating its universality. This scaling function is even indistinguishable from
that for earthquakes suggesting its general validity for fracture processes independent of time, space, and

magnitude scales.
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The fracture of materials is technologically of enormous
interest due to its economic and human cost [1]. Despite
the large amount of experimental data and the considerable
efforts undertaken [2], many questions about fracture have
not yet been answered. In particular, there is no compre-
hensive understanding of rupture phenomena but only a
partial classification in restricted and relatively simple
situations. For example, many material ruptures occur by
a ‘“one crack’ mechanism and a lot of effort is being
devoted to the understanding, detection, and prevention
of the nucleation of the crack [3—8]. Exceptions to the
one crack rupture mechanism are heterogeneous materials
such as fiber composites, rocks, concrete under compres-
sion, and materials with large distributed residual stresses.
In these systems, failure may occur as the culmination of a
progressive damage involving complex interactions be-
tween multiple defects and microcracks.

In particular, acoustic emission (AE) due to microcrack
growth precedes the macroscopic failure of rock samples
under constant stress [9,10] or constant strain rate loading
[11,12]. This is an example of the concept of “multiple
fracturing” —the coalescence of spontaneously occurring
microcracks leading to a catastrophic failure—which is
thought to be applicable to earthquakes as well despite the
vastly different scales involved [13-15]. Because of this
and the similarity in their statistical behavior, acoustic
emissions can be considered analogous to earthquake se-
quences. The temporal [16,17], spatial [18], and size dis-
tribution [11] of AE events follow a power law, just as it is
commonly observed for earthquakes [19,20]. Such power-
law scaling can be considered indicative of self-similarity
in the AE and earthquake source process [16].

The time evolution of AE and earthquake data also
display considerable differences. Laboratory rock fracture
is dominated by a large number of foreshocks while seis-
micity in the Earth’s crust is characterized by an abundance
of aftershocks [21]. Here, we show that despite this differ-
ence the probability density function (PDF) for the time
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interval between successive events is the same in both
cases if they are rescaled with the mean waiting time or
equivalently with the mean rate of occurrence. In particu-
lar, the PDF for laboratory rock fracture neither depends on
the specific experiment nor on the specific material. These
observations strongly suggest a universal character of the
waiting time distribution and self-similarity over a wide
range of activity in rock fracture.

In Ref. [22] it was shown that the PDF of earthquake
waiting times—without distinguishing between fore-
shocks, main shocks, or aftershocks—for different spatial
areas, time windows, and magnitude ranges can be de-
scribed by a unique distribution if time is rescaled with
the mean rate of seismic occurrence. It was shown, in
particular, that the distribution holds from worldwide to
local scales, for quite different tectonic environments, and
for all magnitude ranges considered. This is even true if the
seismic rate is not stationary as during periods of pro-
nounced aftershock sequences when the rate decays ac-
cording to Omori’s law [23]. In those cases, the waiting
times have to be rescaled by the instantaneous rate instead
[22].

Here, we analyze in the same way the waiting times
between AE events in time series of laboratory rock frac-
ture obtained from different experiments. We initially re-
strict our analysis to periods of stationary activity, i.e.,
periods where pronounced activity peaks are absent and
the mean rate of activity in any subperiod—the instanta-
neous rate—is statistically indistinguishable from the
mean rate of the whole period. Yet, we will show below
that this restriction can be relaxed as it is the case for
earthquakes. Laboratory experiments were performed on
five different materials: Flechtingen sandstone (Fb, poros-
ity about 7%), Bleuerswiller sandstone (Vo, porosity 24%),
Aue granite (Ag, porosity 1.3%), Tono granite (To, poros-
ity 1.7%), and Etna Basalt (Eb, porosity 2.1%). Sandstone
samples were fractured at wet condition (pore pressure
10 MPa), granite and basalt samples at dry conditions.
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The formation of compaction bands was observed in the
case of Vo sandstone [24] and brittle fracture in all other
cases. We investigated the fracture of rock samples at
confining pressures in the range 5-100 MPa in different
axial loading conditions: constant displacement rate
(CDR) of 20 um/min, AE activity feedback control
(AFC) of loading, as described in Ref. [25], and punch-
through (PT) loading conditions [26]. The threshold level
of the rate control sensor allowed varying the speed of the
fault propagation by 3 orders of magnitude, i.e., from
mm/s in CDR tests to um/s in AE AFC tests. The newly
developed data acquisition system (DaxBox made by
PROKEL, Germany) records fully digitized waveforms
(16 bit amplitude resolution, 10 MHz sampling rate) in
6 Gb memory buffer, providing zero dead time of registra-
tion (see [27] for a detailed discussion). Most importantly,
the data acquisition system allows one to record AE events
continuously even for high AE activity which is especially
important for the analysis here. The only limitation on the
shortest registered time intervals between subsequent AE
events comes from the finite duration of the associated
signals leading to the possibility of overlapping AE sig-
nals, for example, doublets or triplets. To simplify the fully
automatic procedure of onset time picking and hypocenters
location, only the first signal is located in a sliding window
of 100 us. Thus, the shortest time interval in the experi-
ments considered here equals 100 us, yet the onset times
of AE arrivals at each particular channel were determined
with accuracy of about 0.5 us. For each experiment, we
selected one or more periods of stationary activity for our
analysis.

In the following, we focus on two quantities to charac-
terize each AE event: time of occurrence and AE adjusted
amplitude calculated according to the procedure described
in Ref. [28]. While in most cases we consider all recorded
AE events, we also study the effect of detection thresholds
by only considering events with AE adjusted amplitude A
above a certain threshold Ay,. In both cases, the AE series is
transformed into a point process where events occur at
times ¢; with 1 = i = N, and therefore, the time between
successive events can be obtained as 7; = ¢, — t;. These
are the waiting times which are also referred to as recur-
rence times or interoccurrence times. For a given fracture
experiment E, their PDF is denoted by Py(T).

Figure 1 shows the PDF of the normalized waiting times
0 = T/{T) for different rock fracture experiments where
(T) is the respective mean waiting time. The excellent data
collapse implies that P(T/{T)) does not depend on the
particular rock fracture experiment and that we can write

Pg(T) = P(T/T)p) /{T)g. )

Thus for a given fracture experiment E, the PDF Py(T) of
its AE series is determined by its mean waiting time
(T)g = (ty — t;)/(N — 1)—or equivalently the mean rate
Rp = (T)z'—and the universal scaling function P(6)
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FIG. 1 (color online). Probability density function of normal-
ized waiting times T/(T) for five different rock fracture experi-
ments (see Table I for details) and an earthquake catalog from
southern California for comparison (see text for details). The
solid line corresponds to a fit based on Eq. (2) with 8 = T/{T)
giving v = 0.8 and B = 1.4.

which can be well approximated by a gamma distribution
P(6) < 91" exp(—6/B), 2

with y = 0.8, B = 1.4 and the prefactor fixed by normal-
ization [29]. Therefore, we have essentially a decreasing
power law with exponent about 0.2, up to the largest values
of the argument, # = T /(T about 1, where the exponential
factor comes into play. This is statistically indistinguish-
able (at the 20 level) from the results for earthquake data
given in Ref. [22], namely, v = 0.67 £0.05 and B =
1.58 = 0.15. As shown in Fig. 1, this is also confirmed
by the PDF of an earthquake series from southern
California which we have included for comparison [30].
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FIG. 2 (color online). Probability density function of AE ad-
justed amplitude A for the same rock fracture experiments as in
Fig. 1.

125502-2



week ending
PRL 98, 125502 (2007) PHYSICAL REVIEW LETTERS 23 MARCH 2007
oo b ' 1015 .o DL E 102§ E
10k o ] £ o oo . 10'F 1
0 0 A @ e E
¥ 10 3 04" & oA R R g, 3 0
~107F EDPN ~ 107 3
& Fb38 AT 128
X 10'27 o Vol_b(>1V) e X 0 f ¥ 10°F E
= Vol_b (>2V) = [ = o 1
& [ |a Vo2a 1072 (oA 4 a7 10 F[o To22a & 73
107 | Yoab % 3 EID aens S[ |0 ey &
4 Vo3_c (>0.6V) 3|0 Agr4 ] 107F 1 To3.2 (0.6V) &%
107 |+ VoseIv) o4 107 F |2 agay) 4L | Tos21v) 1
Vo3_¢ (>2V) A f Agi5_a 10785 1053
-5 sl Lol Ll 1 -4 | | Ll Ll i -5 sl vl 0l Lol P sl
10 "~ E N 10 . K N 10 B B E N
10” 107 10" 10° 10’ 0t 10t w0 ot 10 10 10t w0 10?10t 10 10
T/<T> T/<T> T/<T>

FIG. 3 (color online).

Probability density functions of normalized waiting times T/(T) for fracture experiments on sandstone, Aue

granite, and Tono granite (from left to right); see Table I for details. The solid lines correspond to best fits according to Eq. (2) giving
vy=092and B=1.2, y =0.82 and B = 1.3, y = 0.70 and B = 1.5, respectively.

In particular, P(#) is independent of the frequency-
amplitude distribution of the AE signal. As Fig. 2 shows,
the PDF P(A) for the AE adjusted amplitude A depends
crucially on the particular experiment. While the overall
structure of P(A) is rather similar for the different experi-
ments—a sharp increase up to a maximum value followed
by a power-law—like decrease—details such as the loca-
tion of the maximum and the slope S of the tail can be very
different. For instance, the latter varies between 2.5 and 3.7
for the considered experiments. This corresponds to a
variation in the Gutenberg-Richter exponent b between
1.1 and 1.9 which characterizes the frequency-magnitude
relation of earthquakes [31,32]. Thus for our rock fracture
experiments, the variation in b is larger than the regional
variability in the earthquake data studied in [22]. Yet, P(6)
remains basically unchanged. More importantly, even con-
sidering only events above a lower threshold Ay, as for the
data set To5_2 in Fig. 1, does not affect P(#). This indi-
cates the robustness of our results.

This robustness is further confirmed by Fig. 3, which
shows P(6) for a large selection of fracture experiments
(see Table I for details). Again, P(6) can be well described
by Eq. (2). The slight variation in the fitted values of vy and
B can be attributed mainly to statistical fluctuations and
partially to measurement induced biases: The relatively
high value of y for sandstone is a consequence of the
inability to detect the shortest waiting times due to mea-
surement restrictions absent in the other experiments. This
absence of short waiting times (an order of magnitude
compared with granite) significantly biases the estimate
of vy towards higher values.

Figure 3 shows not only that for sandstone and different
types of granite the influence of the specific material on
P(6) is negligible but also that the type of experiment
(punch through versus constant displacement rate versus
activity feedback control) has no significant influence on
P(6). Moreover, Fig. 3 indicates that variations with A, are
negligible as well. Even restricting the included AE events
to arbitrarily selected areas within the rock sample did not
alter P(6) (not shown). All these observations strongly

suggest that P(#) given in Eq. (2) is a universal result for
rock fracture. It further implies that P(T) is self-similar
over a wide range of activity rates spanning 2 orders of
magnitude for the experiments considered here alone (see
Table I).

Our results also indicate that the universal form of P(6)
can be recovered for AE signals with largely varying AE
rates—as, for example, during periods of pronounced
foreshock sequences—if instantaneous rates are used. As
Table I shows, the AE signal of experiment Vo2 consists of
at least two long periods of stationary activity, Vo2_a and
Vo2_b, with different (T')’s. Yet, the respective PDFs P(6)

TABLE I. List of analyzed rock fracture experiments. Here, P,
is the confining pressure, Ay, is the selected AE amplitude
threshold, (T is the mean waiting time, and N the number of
AE events.

Name Loading P, (MPa) Ay (V) (T) (sec) N
FB38 AFC 50 0 0.0777 10339
Vol_b CDR 100 1.0 0.0509 12817
2.0 0.189 3447
Vo2_a CDR 60 0.0 0.110 12708
Vo2_b CDR 60 0.0 0.0687 26218
Vo3_c CDR 80 0.0 0.0453 30287
0.6 0.0943 14564
1.0 0.222 6188
2.0 1.04 1318
AgT72 AFC 20 0.0 0.154 4465
Ag73 AFC 20 0.0 0.337 9860
AgT4 AFC 10 0.0 0.120 10486
1.0 0.453 2780
Agi5_a AFC 20 0.0 0.0479 1838
To2_2 a PT 5 0.0 0.0371 1445
To2_3_a PT 30 1.0 0.0364 1700
To5_2 AFC 20 0.0 0.230 21135
0.6 1.07 4538
1.0 2.58 1889
To5_3 AFC 30 0.0 0.369 2263
Eb12 AFC 20 0.0 0.776 1632
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are indistinguishable as follows from Fig. 3. This implies
that P(6) for the combined signal is the same as well [33].

While we have presented strong evidence that P(8) is
universal for AE signals in rock fracture and earthquake
sequences, the correlations between subsequent waiting
times are very different. In Ref. [35], it was shown that
the distribution of waiting times between earthquakes
strongly depends on the previous waiting time, such that
small and large waiting times tend to cluster in time. We
find that this is not the case for the AE signals studied here.
In contrast, the conditional PDF P(6|6,) is independent of
the previous waiting time T, with 6, = T,/{T) and, thus,
P(610,) = P(6). This might be due to the small number of
pronounced foreshock and aftershock clusters of which the
latter are particularly dominant in seismicity.

To summarize, we have shown that the probability den-
sity function for waiting times in laboratory rock fracture is
self-similar with respect to the AE rate and can be de-
scribed by a unique and universal scaling function P(6). Its
particular form can be well approximated by a gamma
function implying a broad distribution of waiting times.
This is very different from an exponential distribution
expected for simple random Poisson processes and indi-
cates the existence of a nontrivial universal mechanism in
the AE generation process. The similarity with seismicity
even suggests a connection with fracture phenomena at
much larger scales and might help to understand this
mechanism.
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discussions.
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