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We present for the first time the nonlinear dynamics of quantum electrodynamic (QED) photon splitting
in a strongly magnetized electron-positron (pair) plasma. By using a QED corrected Maxwell equation,
we derive a set of equations that exhibit nonlinear couplings between electromagnetic (EM) waves due to
nonlinear plasma currents and QED polarization and magnetization effects. Numerical analyses of our
coupled nonlinear EM wave equations reveal the possibility of a more efficient decay channel, as well as
new features of energy exchange among the three EM modes that are nonlinearly interacting in
magnetized pair plasmas. Possible applications of our investigation to astrophysical settings, such as
magnetars, are pointed out.
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Recently, there has been a great deal of interest [1] in the
investigation of effects associated with radiation pressure
and quantum vacuum fluctuations in nonlinear media. Such
studies are of importance in astrophysical environments,
where copious amounts of electron-positron pairs exist due
to numerous physical processes [1]. Elastic photon-photon
scattering is traditionally described within quantum elec-
trodynamic (QED) [1,2]. However, observable effects of
elastic photon-photon scattering among real photons have
so far not been reported in the laboratory [1,3]. For astro-
physical systems [4,5] the situation is different, since the
large magnetic field strength in pulsar and magnetar [6]
environments changes the diamagnetic properties of vac-
uum significantly [7], and leads to phenomena such as
frequency downshifting [5]. The latter is a result of
photon-splitting [8,9], and the process may be responsible
for the radio silence of magnetars [5,10]. Moreover, the
propagation of electromagnetic waves in a relativistically
dense electron gas [11] and in a relativistic electron-
positron gas [12] have been discussed, leading to the
important effect of gamma photon capture and pair plasma
suppression around pulsars [13].

In this Letter, we present the nonlinear photon splitting
of electromagnetic (EM) waves propagating perpendicu-
larly to a strong external magnetic field B0 in a pair plasma.
Because of the QED effect [1], a photon in vacuum can
decay into a backscattered and a forward scattered photon,
where the latter two photons have polarizations perpen-
dicular to that of the original photon [8,9]. Noting that
significant pair production [14] occurs in astrophysical
settings (viz. in pulsar and magnetar environments), we
demonstrate here a novel possibility of a nonlinear decay
interaction, due to a competition between QED and plasma
nonlinearities. We note that most of previous investigations
[15,16], including both QED and plasma effects, have been
limited to linear EM wave propagation. Here we derive
three dynamical equations with nonlinear couplings be-
tween photons with different polarizations. From these

coupled mode equations, the QED cross section for photon
splitting [8] can be deduced in the limit of zero plasma
density. We discuss applications of our results to magnetar
atmospheres.

Photon-photon scattering can be described by the
Heisenberg-Euler Lagrangian [17,18] L � �0�E2 �
c2B2�=2� ��2

0��E
2 � c2B2�2 � 7�cE � B�2�. Here � �

��=90���1=�0E2
crit�, � � e2=4��0@c is the fine-structure

constant, Ecrit � m2c3=e@	 1018 V=m is the critical field
[1], @ is the Planck constant, m is the electron mass, �0 is
the vacuum permittivity, and c is the vacuum speed of light.
The last two terms in the Heisenberg-Euler Lagrangian
represent the effects of the vacuum polarization and mag-
netization. The QED corrected Maxwell equations can
then be written in their classical form using D � �0E�
P and H � c2�0B�M, where [1] P � 2�2

0��2�E
2 �

c2B2�E� 7c2�E � B�B� and M � 2c2�2
0���2�E2 �

c2B2�B� 7�E �B�E�, which are valid for jEj, cjBj 

Ecrit and !
 !e � mc2=@ � 8� 1020 rad=s.

Next, we study wave propagation perpendicular to an
external magnetic field B0 � B0ẑ in an electron-positron
plasma, letting all variables depend on (x, t). Assuming
that the charge density is negligible, the wave equation for
the electric field E then reads

 �@2
t � c2@2

x�E � ���1
0 �@tj� c

2x̂@2
xPx�; (1)

where j � @tP�r�M�
P
e;pqnv, jEj=c, jBj 
 B0, v

denotes the average (fluid) velocity, and the sum is over the
electron and positron contributions. The latter are deter-
mined from the relativistic equation of motion

 �@t � v � r���v� � �q=m��E� v�B�: (2)

We assume that the EM wave frequency! and the electron
(positron) plasma frequency !pe�p� are much smaller than
the magnitude of the electron (or positron) gyrofrequency
j!ce�p�j � !c � eB0=m, relevant for pulsar and magnetar
atmospheres [19]. This ordering make charge density os-
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cillations negligible, as the longitudinal motion is given by
the E� B-drift to leading order. Next, we linearize and
Fourier decompose to obtain the dispersion relations for
propagation perpendicular to ẑ [20]
 

!2 � k2c2�1� 8��; (3a)

!2 � k2c2�1� 14�� �!2
p; (3b)

where!p � �!2
pe �!2

pp�
1=2 is the plasma frequency of the

pair plasma. Here, � � ��0c
2B2

0 
 1, and we assume that
!2
p 
 !2 [21]. We have omitted the contribution propor-

tional to !2!2
p=!

2
c in (3a), which is smaller than the

plasma contribution proportional to !2
p in (3b). We note

that the EM mode described by (3a) has the electric field
perpendicular to B0 in the ŷ direction (approximately),
whereas the EM mode described by (3b) has the electric
field parallel to B0. Henceforth, the two different polar-
izations will be denoted by the subscripts? and k, respec-
tively. In [16,22], the linear effects from the combined
QED and plasma effects are discussed in detail.

Next, we represent the EM waves as ~E�x; t� exp�ikx�
i!t� � complex conjugate, and the slowly varying ampli-
tudes are denoted by tilde. Our aim is to investigate photon
splitting [8,9], a parametric process where one photon with
perpendicular polarization decays into two photons with
parallel polarizations. Denoting the latter waves with in-
dices 1 and 2, the energy and momentum conservation
relations (matching conditions) are !? � !1k �!2k and
k? � k1k � k2k. We point out that in addition to this pro-
cess, QED allows a decay of the type !? � !1? �!2k

[2]. However, the scattering amplitude of this process is
suppressed by a factor of the order �� [2]. The presence of
a plasma may in principle change this ordering and also
add new decay channels, but in the strongly magnetized
high-frequency regime considered here, !, !c  !p we
note that this is not the case. For !p � 0, the simultaneous
fulfilment of the matching conditions and the Eqs. (3a) and
(3b) requires that one of the EM waves is backscattered,
i.e., either k1k < 0 or k2k < 0. Furthermore, �
 1 means
that the backscattered EM wave has a much smaller fre-
quency than !?. On the other hand, for !p � 0, the
matching conditions also allow for both the decay products
to be scattered in the forward direction. Next, we divide all
quantities into unperturbed and perturbed parts, i.e., B �
B0 � B1 where the perturbed part fulfills jB1j 
 jB0j, and
similarly for the polarization, magnetization, and density.
We then include the resonant second order nonlinear terms
from P and M in Maxwell’s equations (noting that
P � P0 � P1 � P2, where P2 is second order in the per-
turbed EM field, etc.) together with the second order terms
in (2) (i.e., the Lorentz force and the convective derivative),
and the nonlinear current density in the right-hand side of
(1). From the continuity equation @t�1 � ��0@xvx we
solve for the density. After straightforward algebra, sub-
stituting linear expressions into the nonlinear terms, we
obtain our coupled mode equations

 

@t ~E? � vg?@x ~E? � !?C ~E1k
~E2k=Ecrit; (4a)

@t ~E1k � vg1@x ~E1k � !1kC ~E�2k
~E?=Ecrit; (4b)

@t ~E2k � vg2@x ~E2k � !2kC ~E�1k
~E?=Ecrit; (4c)

where vgj � @!j=@kj is the group speed (j equals ?,
1k and 2k), and the asterisk denotes complex conju-
gate. The coupling strength is C � Cpl � CQED, where
Cpl � i��=90���1=2�k?c=!?��!

2
p=!1k!2k� is due to the

plasma nonlinearities [23] and CQED � 2i���=90��1=2�

�10�k?c=!?� � 7�k1kc=!1k � k2kc=!2k�� is due to QED
nonlinear interactions [24]. During certain conditions and
for sufficiently long times, the multiscale expansion behind
Eqs. (4) can break down due to the growth of higher order
terms. However, we will assume that, due to convective
stabilization (see below), such effects are negligible and
the evolution is well described by (4).

Let us now discuss the relative importance of the QED
and plasma effects in various regimes.

Case 1.—In the regime !p=!? 
 �, the matching
conditions, the dispersion relations, and �
 1 give k2k �
�3�k?=2 and !2k � 3�!?=2, where the last approxima-
tion is valid to first order in �, and we have chosen !2k as
the low-frequency backscattered wave with k2k < 0. We
note that the condition !p=!? 
 � ensures that the QED
effect dominates over the plasma effects.

Case 2.—Increasing the plasma density affect the linear
properties of the low-frequency EM mode first. However,
we note that the expression !2k � 3�!?=2 even holds
when the plasma effect dominates over the QED effect in
Eq. (3b) for the low-frequency EM mode. Increasing the
plasma frequency to the regime!p=!? 	 �, the nonlinear
coefficients CQED and Cpl become comparable and the
matching conditions further imply that !2k 	!p 	 �!?
[see the note after Eqs. (3)]. Furthermore, we note that for
!p * 3�!? we would have forward scattering instead of
backscattering of the low-frequency EM mode.

Case 3.—For larger plasma frequency (!p=!?  �)
the QED contribution to the frequency !? may still domi-
nate over the plasma contribution, but jCQEDj 
 jCplj, and
for the nonlinear wave interaction we can thus omit the
QED effect in this regime.

We note that the system (4) has the conserved en-
ergy E �

R
�jE?j

2 � jE1kj
2 � jE2kj

2�dx when !? �
!1k �!2k, and that two other constants are N 1 �R
�jE?j

2=!? � jE1kj
2=!1k�dx and N 2 �

R
�jE?j

2=!? �
jE2kj

2=!2k�dx, corresponding to the Manley-Rowe re-
lations. The constants of motion are used as a check of
the numerical calculations presented below. We first
make a linear stability analysis in the presence of a pump
EM wave. Thus, we consider the decay of a homogene-
ous intense wave E?�E?0, where jE?0j  jE1kj, jE2kj,
into daughter EM waves E1k � Ê1k exp�iKx� i�t� and
E2k � Ê2k exp��iKx� i�t�. From (4), we obtain the non-
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linear dispersion relation ��� vg2kK���� vg1kK� �
�!1k!2kjCj

2jE?0j
2=E2

crit. From the latter, the growth
rate of the daughter EM waves is obtained as ��

�!1k!2kjCj2jE?0j
2=E2

crit��vg1k�vg2k�
2K2=4�1=2 for

wave numbersK<2�!1k!2k�
1=2jCE?0j=jvg2k�vg1kjEcrit.

To study the dynamics of intense EM waves in a strong
magnetic field, we numerically solve the coupled Eqs. (4),
and display the results in Figs. 1–3. We use 1000 grid
points to resolve the numerical domain �106 � xk? �
106 with periodic boundary conditions, and 20 000 steps
to advance the solution in time. A pseudospectral method is
used to approximate the spatial derivatives and a 4th-order
Runge-Kutta method for the time stepping. In Figs. 1 and
2, the plasma is absent, so that the only EM wave cou-
plings are due to the QED effect. We used � � 0:01,
yielding k1k �1:017k?, k2k ��0:017k?, !?�0:959k?c,
!1k � 0:943k?c, and !2k � 0:016k?c. In Fig. 1, we pre-
sent the evolution of an initially homogeneous beam of
amplitude ~E?�0:02Ecrit. Initially, the two daughter waves
grow exponentially, followed by a nonlinear oscillatory
phase. Figure 2 exhibits the nonlinear dynamics of a local-
ized wave packet. We observe the decay of the EM pulse
into a forward scattered wave E1k and a backscattered
wave E2k. In Fig. 3, we show the dynamics of a localized
EM pulse when the plasma effect is important. We consider
the particular case !p � 3�!?, so that the low-frequency
wave E2k has approximately zero group speed and a fre-
quency !2 � !p. We thus used � � 0:01 and !p �

3�!? � 0:03!?, yielding k1k � k?, k2k � 0, !? �
0:959k?c, !1k � 0:929k?c, and !2k � !p � 0:030k?c.
The energy of the pump E? is transferred to a forward
scattered wave E1k and zero-group speed waves E2k.

The present study is of relevance for EM wave propa-
gation in the vicinity of pulsars and magnetars. For ex-
ample, the radio silence of magnetars is assumed to be
connected with the photon splitting in the strong magnetar
fields (109–1011 T) [5,10]. Photon splitting can suppress
the creation of electron-positron pairs [10], but we still
expect the presence of an electron-positron plasma [14] in
such environments. The Goldreich-Julian density is given
by [25] nGJ � 7� 1015�0:1=���Bp=108� m�3, where � is
the pulsar period time (in seconds) and Bp is the surface
pulsar magnetic field (in Tesla). The pair plasma density is
expected to satisfy ne � np � MnGJ, where a moderate
estimate of the multiplicity gives M � 10 [26]. Choosing
this value and letting � � 1 s, we note that for the weak
magnetar field strength Bp � 109 T, the characteristic
pump frequency !?char 	!p=�, where the QED and
plasma effects are of equal importance, has the value
!?char 	 4� 1015 rad=s, i.e., in the optical range. For
!? 
 !?char, the plasma nonlinearities dominate,
whereas the QED effect dominates in the opposite regime.
The evolution of the coupled system of Eqs. (4) is, to a
large extent, controlled by the pulse length of the pump
mode. For long pulse lengths with L �!?CE?=Ecrit�

�1

(Fig. 1), the system shows a ‘‘predator-prey’’ type of
behavior where the energy oscillates chaotically between
the modes. For a moderate pulse length with L	
�!?CE?=Ecrit�

�1, the excited EM wave energy propagates
out of the interaction region, and one encounters a more
ordered behavior and an effective damping of the pump
mode. The EM wave energy is then mainly converted to the
parallel polarized forward scattered EM mode (Fig. 2). For
a short pulse length with L
 �!?CE?=Ecrit�

�1, thermal
fluctuations do not grow due to convective stabilization
(the growth rate � vanishes for large wave numbers), and
the nonlinear interaction vanishes. As the plasma density

 

FIG. 1 (color online). The decay of the pump mode E? �
~E?=Ecrit into a forward scattered mode E1k � ~E?=Ecrit and a
backscattered mode E2k � ~E?=Ecrit. Initially, the pump is set to
E? � 0:02, while E1 and E2 is set to a low-level random noise.
After the initial exponential decay, the energy is transferred
between the pump and the two EM sidebands in a semiperiodic
and chaotic manner. We used !p � 0 and � � 0:01, yielding
k1k � 1:017k?, k2k � �0:017k?, !? � 0:959k?c, !1k �

0:943k?c, and !2k � 0:016k?c.

 

FIG. 2 (color online). The decay of the pump mode E? �
~E?=Ecrit. Initially the localized pump was set to E? �
0:05 exp���xk? � 105�2=2:5� 109�. The pump decays into a
forward scattered wave E1k and a backscattered wave E2k. We
used !p � 0 and � � 0:01, yielding k1k � 1:017k?, k2k �

�0:017k?, !? � 0:959k?c, !1k � 0:943k?c, and !2k �

0:016k?c.
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increases, plasma effects become important, as depicted in
Fig. 3. For !p 	 �!?char, there are two simultaneous
effects of the plasma. First, in this regime the QED and
plasma contributions to the coupling strength are compa-
rable, i.e., Cpl 	 CQED, which increases the total coupling
strength C � Cpl � CQED, since the phases of Cpl and
CQED coincide. Second, when the group velocity of the
backscattered EM wave is slowed down, the effectiveness
of convective stabilization is diminished, increasing the
interaction strength and speeding up the conversion of
the EM wave energy. Similarly to the case without the
plasma (Fig. 2), the EM wave energy mainly ends up in the
forward scattered EM mode, but the characteristic time
scale is considerably faster with the plasma present. We
stress that the simulations presented in this Letter contain
results that are easily generalizable to other parameter
ranges, following the discussion presented above. The
combined effect of plasma and QED effects should influ-
ence the emission spectra from magnetars and pulsars.
While the QED effects alone shift the spectrum towards
linear polarization, we emphasize that the effect is much
more pronounced when plasma effects are present, which
holds for radiation with frequencies of the order !char 	

!p=�, i.e., in the optical range for magnetars, while in the
infrared to microwave range for pulsars. Thus, we suggest
that evidence for a combined plasma-QED photon-splitting
process should be sought for in the polarization signature
of magnetar and pulsar emission.
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FIG. 3 (color online). The decay of the pump mode E? �
~E?=Ecrit in a strongly magnetized plasma. Initially the localized
pump was set to E? � 0:05 exp���xk? � 105�2=2:5� 109�.
The pump decays into a forward scattered wave E1k and a
mode E2k, which has almost zero group speed. We used � �
0:01 and !p � 3�!? � 0:03!?, yielding k1k � k?, k2k � 0,
!? � 0:959k?c, !1k � 0:929k?c, and !2k � !p � 0:030k?c.
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