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The exact solution to the hierarchy of nonlinear lattice Boltzmann (LB) kinetic equations in the
stationary planar Couette flow is found at nonvanishing Knudsen numbers. A new method of solving LB
kinetic equations which combines the method of moments with boundary conditions for populations
enables us to derive closed-form solutions for all higher-order moments. A convergence of results suggests
that the LB hierarchy with larger velocity sets is the novel way to approximate kinetic theory.
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The emerging field of fluid dynamics at the micrometer
scale becomes increasingly important due to fundamental
engineering issues of micro-electromechanical systems
[1]. Recently, much attention was focused on the use of
lattice Boltzmann (LB) models for simulation of micro-
flows by a number of groups [2–5]. By now, it is under-
stood that lattice Boltzmann models form a well-defined
hierarchy based on discrete velocity sets with velocities
defined as zeros of Hermite polynomials [6] or rational-
number approximations thereof [7]. The LB hierarchy
constitutes a novel approximation of the Boltzmann equa-
tion and has to be considered as an alternative to more
standard approaches such as higher-order hydrodynamics
(Burnett or super-Burnett) or Grad’s moment systems (for
a review see, e.g., [8]). One salient feature of the LB
hierarchy, which is crucial to the present study and even-
tually to any realistic application, is that it is naturally
equipped with relevant boundary conditions derived from
Maxwell-Boltzmann theory [2].

Agreement between LB simulations and kinetic theory
[2], hydrodynamics with slip boundary conditions [5], and
molecular dynamics was reported. However, most of these
numerical works rely on simulation with finite accuracy
while the crucial question of whether or not the kinetic
equations underpinning the LB method are valid physical
models of microflow remains unanswered. Therefore, it is
not surprising to read comments claiming, for example,
that the slip flow in the LB method is due to discretization
errors rather than a physical effect, ([9] and references
therein). Thus, validity of LB method cannot be addressed

unless a comparison to representative exact solutions is
performed. It is needless to say that exact solutions to
nonlinear kinetic equations in realistic geometries are
very rare.

In this Letter, we show that the LB hierarchy of kinetic
models admits a much more accurate treatment. In par-
ticular, we find closed-form analytical solutions to non-
linear kinetic equations of the LB hierarchy in the
stationary planar Couette flow. Not only the slip velocity,
but also the shear stress and normal stress difference are
evaluated in a closed form. Comparison to the kinetic
theory demonstrates convergence of approximations with
the increase of the number of velocities. In the nonlinear
domain, even the first member of the LB hierarchy predicts
nontrivial normal stress which is confirmed with a more
microscopic direct simulation Monte Carlo (DSMC)
method [10]. The accurate results obtained herein strongly
suggest that the LB hierarchy should be considered as a
novel general tool of kinetic theory rather than a plain
solver for hydrodynamics.

Kinetic equations studied in this Letter are two-
dimensional isothermal discrete velocity models with the
Bhatnagar-Gross-Krook (BGK) nonlinear collision inte-
gral (for a derivation of these models from the
Boltzmann-BGK equation see, e.g., [6,7]),

 @tfi � ci�@�fi � �
1

�
�fi � f

eq
i �; (1)

where summation convention is applied, � is the relaxation
time, and the equilibrium distribution is
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j�ci�
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j�j�
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s
�ci�ci� � c2

s����
�
: (2)

Here � �
P8
i�0 fi is the density, j� �

P8
i�0 ci�fi is the

momentum density, cs �
��������������������
�kBT0�=m

p
is the speed of

sound, T0 is the reference temperature, and m is particle’s
mass. The first member of the LB hierarchy is the so-called
D2Q9 model where the discrete velocities ci�, i �
0; . . . ; 8, and the weights wi are
 

cx �
���
3
p
csf0; 1; 0;�1; 0; 1;�1;�1; 1g;

cy �
���
3
p
csf0; 0; 1; 0;�1; 1; 1;�1;�1g;

w � �1=36�f16; 4; 4; 4; 4; 1; 1; 1; 1g:

(3)

The model (1) conserves density and momentum density
but not energy. In the hydrodynamic limit, it recovers the
Navier-Stokes equations with the kinematic viscosity � �
�c2

s .
We consider the planar Couette flow, where a fluid is

enclosed between two parallel plates separated by a dis-
tance L. The bottom plate at y � �L=2 moves with the
velocity U1 and top plate at y � L=2 moves with the
velocity U2. Let us introduce the mean free path l ����

3
p
�cs and the Knudsen number Kn � l=L. The solution

for the x velocity of the D2Q9 model derived below reads

 ux �
1

�9

�
y
L

�
�U�U; (4)

where �9 � 1� 2 Kn, and where �U � U2 �U1 is the
relative velocity of the plates, and U � �U1 �U2�=2 is the
centerline velocity. Solution (4) is Galilean invariant. The
slip velocity at the plates, ux��L=2�, features the expected
behavior from a linear increase with Kn at small Kn to a
plug flow at Kn! 1 where ux becomes position indepen-
dent. Recent careful numerical study of the D2Q9 model
by Sofonea and Sekerka [5] revealed the same result (4).

The next member of the LB hierarchy is the model based
on the roots of fourth-order Hermite polynomial f�a;�bg,

where a �
����������������
3�

���
6
pp

and b �
����������������
3�

���
6
pp

. In two dimen-
sions, the discrete velocities are all possible tensor prod-
ucts of the two copies of the four sets f�a;�bg. For this
D2Q16 model [6,7], the solution for the velocity profile is
found to be

 ux �
1

Z16
sinh

�
y

KnL

�
�U�

1

�16

�
y
L

�
�U�U; (5)

where

 �16 � 1� 2 Kn
�

2 cosh� 1
2 Kn� �� sinh� 1

2 Kn�

� cosh� 1
2 Kn� � 2

���
3
p

sinh� 1
2 Kn�

�
; (6)
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�

4 Kn

�
�4 Kn��� cosh

�
1

2 Kn

�

� 2��Kn�
���
3
p
� sinh

�
1

2 Kn

��
; (7)

and � � a� b � 3:076. The difference between (4) and
(5) is that the latter predicts the boundary Knudsen layer
[first term in (5)] in a qualitative agreement with kinetic
theory [11]. On the quantitative side, our analytical results
can be immediately compared with the classical study of
the linearized Boltzmann-BGK equation by Willis [12]
(see Fig. 1, where also the results of the DSMC simulation
are reported; note that the data in Fig. 1 are parametrized
with the Knudsen number according to a relation, Kn ���������

3=2
p

��1, where� � L
�

�����������������������
m=�2kBT0�

p
is a parameter used in

Table I of Ref. [12]). While the simplest D2Q9 model
predicts well a slip-flow solution, it fails in the transient
regime (Kn * 0:1), in agreement with numerical studies
[2]. However, already the D2Q16 model considerably
improves the situation. The strong pattern of convergence
with increasing the number of velocities in the LB hier-
archy is clearly there.

We shall now proceed with major steps of derivation for
the D2Q9 model. First, the kinetic equation for nine pop-
ulations (1) is rewritten in a form of a moment system for
nine moments which we choose as follows: three locally
conserved fields, �, jx, jy; three independent components
of the pressure tensor, P�� �

P8
i�0 fici�ci�, which we

choose as the trace P � Pxx � Pyy, N � Pxx � Pyy (nor-
mal stress difference), and Pxy; two components of the
energy flux, q� �

P8
i�0 fic�ic

2
i , and a scalar fourth-order

moment,  � Ryyyy � Rxxxx � 2Rxxyy, where R���	 �P8
i�0 fici�ci�ci�ci	. The moment system is easily obtained

and is not displayed here.
Second, we find steady state solution to the moment

system under two conditions: (i) unidirectional flow: as
the plates extend to infinity in the x direction, we can
expect that the steady state solution will be independent
of x, and (ii) impermeable plates: the normal mass flux
equals zero at the walls. For a unidirectional stationary
flow, balance equations of density and of the two compo-
nents of momentum read @yjy � 0, @yPxy � 0, and @y�P�
N� � 0, whereupon, using condition (ii), we get jy � 0,
Pxy � Pneq

xy , P � N � P0, where integration constants Pneq
xy
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FIG. 1. Comparison of the LB hierarchy with the linearized
Boltzmann-BGK model [12] and DSMC simulation. Left: Slip
velocity at the wall as a function of Knudsen number.
Right: Slope of the velocity profile at the centerline. Plotted is
the deviation from the Navier-Stokes prediction, Y �
�U�1�dux=dy�jy�0 � 1.
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and P0 will be determined below (superscript ‘‘neq’’ is
added to emphasize that only the nonequilibrium part is
nontrivial for Pxy). Furthermore, equation for the pressure
tensor reads

 @y�qx � 3c2
sjx� � �

1

�
Pneq
xy ; (8)

 @yqy �
1

�

�
j2
x

�
� N

�
; (9)

 @yqy �
1

�

�
2�c2

s �
j2
x

�
� N � P0

�
: (10)

From (9) and (10) it follows P0 � 2�c2
s . Thus, the sta-

tionary density is constant. Equation for energy flux reads

 qx � 4c2
sjx; (11)

 @y

�
3c2

s

�
P�

1

2
N
�
�

1

2
 
�
� �

1

�
qy: (12)

Substituting (11) into (8), and integrating the resulting
differential equation for jx, we obtain the result for the
nontrivial velocity component ux � jx=�,

 ux�y� � �



�c2
s
�y� �V�; (13)

where V is constant of integration, and where we have
introduced 
 � Pneq

xy =�. Thus, we find the solution for the
velocity (up to two constants,
 and V) before higher-order
moments are addressed. We note in passing that it is
precisely the relation (11) pertinent to the low-symmetry
D2Q9 model (the energy flux is proportional to the mo-
mentum flux) which precludes the development of the
boundary Knudsen layer. This constraint is removed in
the more symmetricD2Q16 model and in any higher-order
member of the LB hierarchy.

The stationary equation for fourth-order moment  to-
gether with (9), gives  � 4c2

s
j2
x
� � 3c2

sN � 4�c4
s . Finally,

from (9) and (12), we get

 @yq
neq
y ��

Nneq

�
; @yNneq ��

qneq
y

3�c2
s
�
�
3
@y�u2

x�: (14)

The ordinary differential equations (14) can be integrated

explicitly since the velocity ux�y� is available from (13).
Denoting ’�y� � exp�y=

���
3
p
�cs�, the result is

 ���
3
p
csNneq�qneq

y �A�’��y��
2�
2

�c2
s

	fy���V�
���
3
p
cs�
1�’��y��g; (15)

where A� and A� are constants of integration. Thus, the
solution to the stationary moment system depends on the
four integration constants, 
, V, A�, and A�. To determine
these, we need to specify boundary conditions at the mov-
ing plates. Note that this is precisely where the LB hier-
archy differs from the method of moments. It is well known
that for moment methods, such as Grad’s systems, it is not
possible to provide self-consistent boundary conditions for
the moments. In our case, this is possible because the
boundary conditions for the LB equations are formulated
in terms of populations rather than in terms of moments.
Upon inverting the linear relation between the moments
and the populations, and using the solution for the mo-
ments derived above, we obtain the stationary populations
fi � feq

i � f
neq
i , where the stationary equilibrium part is

given by (2) with jy � 0 and jx � �ux (13), while the
nonequilibrium part has the form
 

fneq
i � wi

�
Pneq
xy

c4
s
cixciy �

qneq
y

2c6
s
�ciyc2

i � 4c2
sciy�

�
Nneq

2c6
s
�c2
ix � c

2
s�c

2
iy

�
: (16)

Third and finally, we apply the classical diffuse bound-
ary conditions [11], which were adapted to the present
model in Ref. [2]. At the bottom plate (y � �L=2), diffuse
boundary condition in the steady state is

 f2;5;6jy��L=2 � feq
2;5;6��; �U1; 0�: (17)

In other words, in the steady state, the diffuse boundary
condition reduces to setting the corresponding populations
at equilibrium (2) with the density � and velocity of the
wall. Now, in order to find a relation between the two
integration constants V and
, we notice that the difference

fneq

5 � fneq
6 �y��L=2 can be evaluated in two ways. On one

hand, 
fneq
i �y��L=2 � 
fi�y��L=2 � 
f

eq
i �y��L=2, where the

first contribution is due to (17), and the second is due to the
stationary solution for the equilibrium (2) with the velocity
(13), whereupon 
fneq

5 � fneq
6 �y��L=2 � �

���
3
p
�=18cs�
U1 �



�c2

s
�� L

2 � �V��. On other hand, using (16), we find 
fneq
5 �

fneq
6 �y��L=2 �

�

6c2

s
. Matching these expressions, we find a

relation between integration constants 
 and V:

 
 �

���
3
p
csU1

3�
��
3
p

�cs
�L2 � �V�

: (18)

Similarly, at the top plate (y�L=2), f4;7;8jy��L=2 �

feq
4;7;8��; �U2; 0�. Again, computing the difference 
fneq

7 �

fneq
8 �y�L=2 in two ways as described above, we find
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FIG. 2. Left: Shear stress at various Knudsen numbers. Labels
are as in Fig. 1. Plotted is the reduced function P�xy � Pxy=P1xy
where P1xy is the shear stress at Kn! 1 of the Boltzmann-BGK
model [12]. Right: Nonequilibrium normal stress difference at
Kn � 0:6. Line: solution (21); symbol: DSMC simulation.
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 � �

���
3
p
csU2

3�
��
3
p

�cs
�L2 � �V�

: (19)

Comparing (18) and (19), we find coefficients V and 
,
and, making use of (13), we arrive at the result for the
velocity profile (4), while the nonequilibrium shear stress
Pneq
xy � �
 reads

 Pneq
xy � �

��
�9

�
�U
L

�
: (20)

Note that in theD2Q16 model the result for the shear stress
can be obtained by replacing �9 with �16 (6). Results for
the shear stress are compared with the data of Willis [12]
and DSMC simulation in Fig. 2. The limiting values of the
effective shear viscosity, �eff � �P

neq
xy L��U���1, at the

infinite Knudsen number are 0.723 for theD2Q9 and 1.113

for the D2Q16 models in units of
��������
kBT0

2
m

q
L; the correspond-

ing result for the Boltzmann-BGK equation is 1 [12].
The same method is used in order to evaluate the two

remaining integration constants A�. Namely, we evaluate
fneq

2 (bottom plate) and fneq
4 (top plate) in the two ways

described above. After some algebra, we find the results for
the nonequilibrium normal stress difference and the trans-
versal energy flux

 Nneq � �
�
�U
L

�
2 ��

�1� 2 Kn�2

�
2� e�1=2 Kn cosh

�
y

KnL

��
;

(21)

 qneq
y � ��

�
�U
L

�
2 �

�1� 2 Kn�2

�
2y

� KnLe�1=2 Kn sinh
�
y

KnL

��
� 2UPneq

xy : (22)

Expressions for the velocity ux (4), the shear stress Pneq
xy

(20), the normal stress difference Nneq (21), and the energy
flux qneq

y (22), when substituted into fi � feq
i � f

neq
i [see

(2) and (16)], furnish the exact solution of Couette flow for
the nonlinear D2Q9 model. The same solution method is
applicable to any member of the LB hierarchy although
algebra becomes more involved. Solution of the D2Q16

model leading to the result (5) will be presented in a
detailed publication.

The normal stress difference (21) is a positive-definite
function which is consistent with kinetic theory of gases.
Importantly, the nonvanishing of Nneq and qneq

y is the direct
implication of the nonlinearity of the kinetic Eq. (1) [man-
ifested by the �U2 dependence in (21) and (22)], and
cannot be predicted on the basis of linearized kinetic
theory [11,12]. Therefore, the DSMC method [10] was
used in order to validate the solution in the nonlinear
domain. The normal stress difference (21) is mapped
onto DSMC data in Fig. 2 which qualitatively confirms
the prediction. Finally, we validate the lattice Boltzmann
method for the kinetic Eq. (1). It is evident in Fig. 3 that the
simulated relative slip accurately reproduces the exact
solution (4). The same holds for all other moments.
Thus, applications of the LB method to microflows are
by no means an ‘‘artifact of numerics’’ [9].

To conclude, our analytical results suggest that the hier-
archy of lattice Boltzmann models is the way to approxi-
mate the kinetic theory. Without a denial of a body of LB
simulations, it must be appreciated that only the exact
solutions answer unambiguously the question of the physi-
cal validity of the method. Our results reveal that applica-
tions of LB methods to microflows should be based on LB
models with larger velocity sets if one seeks a quantitative
prediction, especially in the transient regime.
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FIG. 3. Exact solution for the relative slip velocity (line) and
the lattice Boltzmann simulation (symbol) as a function of
Knudsen number.
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