
Observation of Two-Dimensional Surface Solitons

Xiaosheng Wang,1 Anna Bezryadina,1 and Zhigang Chen1,2

1Department of Physics and Astronomy, San Francisco State University, California 94132 USA
2TEDA Applied Physics School, Nankai University, Tianjin 300457 China

K. G. Makris, D. N. Christodoulides, and G. I. Stegeman
College of Optics and Photonics, CREOL & FPCE, Univ. of Central Florida, Orlando, Florida 32816 USA

(Received 11 December 2006; published 21 March 2007)

We report the first experimental observation of two-dimensional surface solitons at the boundaries
(edges or corners) of a finite optically induced photonic lattice. Both in-phase and gap nonlinear surface
self-trapped states were observed under single-site excitation conditions. Our experimental results are in
good agreement with theoretical predictions.
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Surface waves are ubiquitous wave phenomena that have
been studied in diverse areas of physics such as acoustics,
plasma, ocean physics, and geomechanics, to name just a
few [1]. Electronic localized surface states were first pre-
dicted by Tamm and subsequently studied by Shockley in
the 1930’s [2], and have been demonstrated in a series of
experiments ranging from semiconductor crystal surfaces
to nanoengineered superlattices [3]. In optics, linear
Tamm-Shockley-like surface waves were proposed in
1966 [4], but they were not observed until a decade later
in experiments with AlGaAs multilayer structures [5].

Recently, optical self-trapped discrete surface waves
(surface solitons) have aroused great interest [6–14].
This class of surface waves can be loosely interpreted as
nonlinear defect modes with propagation eigenvalues lo-
cated within the forbidden optical band gaps of a periodic
structure [15]. Thus far, one-dimensional (1D) in-phase
surface solitons, first predicted to exist at the edge of
nonlinear self-focusing waveguide lattices [6], have been
demonstrated experimentally in AlGaAs arrays [7].
Moreover, 1D surface gap or staggered solitons at the
interface between a uniform medium and a self-defocusing
waveguide array have also been analyzed [6,8] and dem-
onstrated in both quadratic [9] and photorefractive non-
linear material systems [10,11]. Unlike their in-phase
counterparts, these latter entities exhibit propagation ei-
genvalues located in the first photonic band gap (between
the first and second Bloch bands) at the edge of the
Brillouin zone. These studies extend the correspondence
between optical surface waves and localized surface Tamm
states into the nonlinear regime, since surface gap solitons
can be viewed as the optical nonlinear analogues of Tamm
states. Quite recently, theoretical studies of such surface
solitons have been carried out in the two-dimensional (2D)
domain where many interesting aspects associated with
nonlinear surface waves are expected to be observed
[12–14]. Despite these efforts, direct experimental obser-
vation of 2D surface solitons has remained a challenge due
to experimental difficulties in fabricating 2D nonlinear

lattices with a sharp edge. In fact, to our knowledge, 2D
surface solitons have never been observed in any system.

In this Letter, we present the first experimental demon-
stration of 2D in-phase and gap surface solitons (2D non-
linear Tamm states) propagating along the boundaries of an
optically induced 2D photonic lattice. The properties and
characteristics of this class of waves are systematically
investigated both experimentally and theoretically. The
difference between the two types of surface solitons is
clearly illustrated in our experiments by phase measure-
ment as well as by monitoring their Fourier spectrum. In
addition, surface solitons at the corner of a 2D lattice were
also observed and compared to those existing away from
the boundaries. These experimental results are corrobo-
rated by our theoretical analysis.

To create a 2D waveguide lattice, we use the optical
induction method as used in discrete soliton experiments
carried out in an infinite uniform lattice [16–18]. In our
experimental setup [18–20], the lattice pattern is generated
by periodic spatial modulation of a partial incoherent
optical beam with an amplitude mask, which enables the
generation of a square lattice pattern with a sharp edge or
corner at the crystal input after proper imaging [Fig. 1(a)].
While the Talbot effect of the periodic intensity pattern is
suppressed by using a diffraction element, the lattice edge
or corner diffracts significantly in the linear region
[Fig. 1(b)], as for the case of defect propagation in a 2D
lattice [20]. With an appropriate level of nonlinearity (as
controlled by lattice beam intensity, coherence, and polar-
ization together with the bias field), the lattice edge or
corner recovers and remains nearly invariant through a
10-mm long Ce:SBN photorefractive crystal [Fig. 1(c)].
Thus, an interface, although somewhat deformed, between
the 2D waveguide lattice (of about 23 �m lattice spacing)
and the continuous material is established in the biased
crystal. To observe the linear and nonlinear propagation
dynamics at the surface of the waveguide lattice, we launch
an extraordinarily-polarized Gaussian probe beam (488 nm
wavelength and 14 �m intensity FWHM) at the interface
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into the crystal, without any tilting angle with respect to the
lattice beam.

First, we apply a positive voltage to turn the crystal into
a self-focusing medium, and demonstrate in-phase surface
solitons propagating in the semi-infinite gap of the lattice.
For comparison, the probe beam is sent to excite a single
waveguide channel (on-site excitation) at or close to the
edge [Figs. 2(a) and 2(d)] as well as far away from the
boundary [Fig. 2(g)]. At a low bias field, the probe beam
exciting the waveguide at the edge (i.e., the first row of the
square lattice) experiences linear discrete diffraction
[Fig. 2(b)]. The discrete diffraction in this case is stronger
in the direction perpendicular to the lattice interface than in
the direction parallel to it, which might arise from the
surface enhanced reflection [7–11]. Similar diffraction
behavior is observed when the probe beam excites a wave-
guide close to the lattice edge [Fig. 2(e)]. However, it is
remarkably different when the probe beam excites a wave-
guide inside and far away from the lattice boundary, for
which the symmetric discrete diffraction pattern [18] is
observed [Fig. 2(h)]. At a high bias field, the probe beam
undergoes nonlinear propagation. Under proper bias con-
ditions (with an applied electric field of 2:2 kV=cm), self-
action of the probe beam leads to localization of its inten-
sity mostly in the waveguide it excites, forming a discrete
soliton [15] [Figs. 2(c), 2(f), and 2(i)]. Again, the intensity

pattern of the discrete soliton at surface [Fig. 2(c)] is
asymmetric as compared to that inside the lattice
[Fig. 2(i)]. We emphasize that the surface soliton is formed
by the nonlinear self-action of the probe beam at the lattice
edge. This is verified by comparing the instantaneous
(before self-action) and steady-state (after self-action) in-
tensity patterns of the probe beam, taking advantage of the
noninstantaneous response of the photorefractive crystal.
In fact, if we reduce the intensity of the probe beam
significantly, it cannot form a soliton but rather experiences
strong discrete diffraction at the surface. This is illustrated
in Figs. 2(j) and 2(k) by 3D intensity plots, where a surface
discrete soliton, as in Fig. 2(c), is formed in steady-state
[Fig. 2(j)], but it cannot survive [Fig. 2(k)] when its
intensity is reduced by a factor of about 8 under the same
bias conditions.

We note that the propagation eigenvalues of the surface
discrete solitons in Fig. 2 exist in the semi-infinite gap of
the lattice, and thus the intensity peaks are located in the
waveguide sites, and the main peak is in-phase with the
adjacent ones. To verify this phase relation, a surface
soliton [shown in Fig. 3(a)] is interfered with a tilted
reference plane wave. The interference pattern is presented
in Fig. 3(b), which shows an in-phase relation for the
intensity spots in the direction parallel to the edge since
the interference fringes through the main peak and the

 

FIG. 2 (color online). Observation of
discrete solitons at different locations
relative to the lattice edge. The first
column shows the lattice patterns with
the waveguide excited by the probe beam
marked by a plus. The second column
shows linear discrete diffraction of the
probe beam at a low bias field of
0:6 kV=cm. The third column shows
soliton formation at a high bias field of
2:2 kV=cm. The fourth column shows
the 3D intensity plots of a surface soliton
(j) and the corresponding pattern when
its intensity is reduced significantly
under the same bias condition (k). (The
added lines mark the interface between
the lattice and continuous region of the
crystal).

 

FIG. 1 (color online). Intensity pat-
terns of a 2D square lattice at the input
of the crystal (a) and the output of the
crystal under linear (b) and nonlinear (c)
propagation. The plus symbol in (a)
marks the location for on-site excitation
of corner solitons and the cross for off-
site excitation of surface gap solitons.
The insert in (a) illustrates the 1st band
structure and high symmetry points.
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adjacent intensity peaks are connected without shifting.
This same in-phase relation is also verified for the direction
perpendicular to the lattice edge due to different behavior
of beam transport towards the waveguide lattice and the
continuous region. When the surface soliton is formed, the
spectrum reshapes, and the bright spot close to the center
becomes more pronounced, indicating that the soliton
originates from the � point in the 1st spectral band of the
2D lattice [21,22].

Next, we apply a negative voltage to turn the crystal into
a self-defocusing medium and demonstrate 2D out-of-
phase (staggered) surface solitons propagating in the first
band gap of the ‘‘backbone’’ lattice [17,21]. Under a proper
defocusing nonlinearity (with an applied electric field of
�1:5 kV=cm), a surface gap soliton is observed with a
single-beam excitation [off site excitation position is
marked with a cross in Fig. 1(a), corresponding to an index
maximum]. Such a surface gap soliton has its intensity
mainly localized in the excitation position, but with long
tails along the directions both perpendicular to and parallel
with the lattice edge [Fig. 3(e)]. The ‘‘staggered’’ structure
of the gap soliton is monitored again by the interference
measurement of the phase [Fig. 3(f)] as well as the spec-
trum measurement in Fourier space [Figs. 3(g) and 3(h)].
The breaking and interleaving of interference fringes in
Fig. 3(f) indicates a staggered phase relation of the surface

gap soliton [10]. The spectrum for this soliton [Fig. 3(h)] is
also dramatically different from that of in-phase surface
solitons in the semi-infinite gap [Fig. 3(d)]. Since the gap
soliton (with propagation constant located between the 1st
and 2nd Bloch bands) is expected to originate from the four
M-symmetry points of the 1st band, its spectrum should
show four bright spots matching the four M points of the
1st Brillouin Zone [21,22]. However, for the surface gap
soliton studied here which has a smooth tail into the
continuous region but a modulated tail into the lattice
region, the contribution to surface gap soliton from the
lattice region shows clearly two bright spots [the top and
right spots in Fig. 3(h)] matching the two M points of the
1st Brillouin Zone, while the contribution from the con-
tinuous region results in deformation of two M points [the
bottom and left corners in Fig. 3(h)], thus making the entire
spectrum to be asymmetric. Considering the deformed
lattice surface as established in our experiment [Fig. 1],
such asymmetry in the k-space spectrum corresponding to
the formation of surface solitons seems to be more pro-
nounced in experimental results [Fig. 3] than in numerical
simulations presented below where a prefect lattice surface
is assumed [Fig. 4].

Even so, the above experimental observations are corro-
borated by our numerical simulations using a normalized
2D saturable nonlinear Schrödinger equation with a semi-

 

FIG. 4 (color online). Numerical re-
sults of in-phase (a)–(c) surface solitons
and out-of-phase (e)–(g) surface gap sol-
itons corresponding to Fig. 3. First col-
umn shows the soliton pattern; second
column shows the interference pattern
between the soliton beam and a tilted
plane wave; third column shows the cor-
responding spatial spectra of the solitons.
The right panel (d) shows 10-mm propa-
gation of the surface gap soliton starting
from bottom, with waveguide lattice lo-
cated in the left side of the beam..

 

FIG. 3 (color online). Experimental re-
sults of in-phase (top) surface solitons
and out-of-phase (bottom) surface gap
solitons. First column shows the soliton
intensity pattern; second column is the
interference pattern between the soliton
beam and a tilted plane wave; third and
forth columns show the spatial spectra
when the probe beam undergoes linear
diffraction and nonlinear self-trapping,
respectively. (The added squares mark
the edge of the first Brillouin Zone).
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infinite index potential [12]. Our analysis leads to solutions
for surface in-phase solitons and surface gap solitons ex-
isting at the edge of the semi-infinite 2D square lattice.
Typical simulation results obtained using parameters close
to those from experiments are presented in Fig. 4, where
the top panels are for in-phase surface solitons obtained
with focusing nonlinearity and the bottom panels are for
staggered gap solitons obtained with defocusing nonline-
arity. Figures 4(a) and 4(e) show the patterns of the surface
solitons corresponding to Figs. 3(a) and 3(e), and Figs. 4(b)
and 4(f) show the interference patterns with a tilted plane
wave corresponding to Figs. 3(b) and 3(f), and Figs. 4(c)
and 4(g) show the theoretical Fourier spectra of the solitons
corresponding to Figs. 3(d) and 3(h), respectively. On the
right panel [Fig. 4(d)], propagation of the surface gap
soliton up to 10 mm is illustrated. These numerical results
are in good agreement with experimental observations.

The results presented above (both the phase structure
and the distinctive Fourier spectrum) clearly indicate that a
single Gaussian probe beam could evolve not only into a
surface soliton in the semi-infinite gap but also to a surface
gap soliton in the first band gap by single-channel excita-
tion at or near the lattice edge. For a 2D lattice, the required
lattice potential (or the induced index changes) for opening
the first band gap is quite different between the focusing
and defocusing lattices [21]. In our experiment, although
the intensity ratio (i.e., the lattice-to-probe-beam peak
intensity ratio) is similar (about 2) for both cases, the
lattice potential we used to form surface gap solitons is
much higher than that for the in-phase surface soliton. This
is achieved by making the normalized lattice intensity
about 7 times higher for the defocusing case as compared
to the focusing case. Experimentally, the estimated index
change for the defocusing lattice is about 1:5� 10�4.
Under such a condition, the first gap should be open even
in the backbone lattice [21], thus enabling our observation
of surface gap solitons. When we decrease the lattice
potential (either by decreasing the bias field or the normal-

ized lattice intensity), we find that the probe beam simply
cannot evolve into a surface gap soliton.

Finally, we present results of surface solitons observed at
the corner of a 2D square lattice. To observe the formation
of a corner soliton, a probe is sent for on-site excita-
tion of the lattice site at the corner [marked by a plus
symbol in Fig. 1(a)]. Although the corner is slightly de-
formed [Fig. 1(c)], discrete diffraction at low nonlinearity
Fig. 5(a) and trapping at high nonlinearity Fig. 5(b) are
observed. In the theoretical model, we have also found
solutions for such corner solitons. Figure 5(c) shows the 3D
plot of the corner soliton solution found using parameters
corresponding to that of Fig. 5(b). We emphasize that such
corner solitons have no analog in the 1D domain.

In summary, we have reported the first experimental
observation of the 2D discrete surface solitons and surface
gap solitons at the interface between an optically induced
2D waveguide lattice and a continuous medium.
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FIG. 5 (color online). Experimental (a), (b), and theoretical (c)
results of in-phase discrete solitons formed at the corner of a 2D
photonic lattice. (a) shows the discrete diffraction at low non-
linearity, (b) shows the formation of a corner soliton at high
nonlinearity, and (c) shows corresponding solution for the corner
soliton. Location for on-site excitation of corner solitons is
indicated in Fig. 1(a).
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