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We present a universal physical picture for describing storage and retrieval of photon wave packets in a
�-type atomic medium. This physical picture encompasses a variety of different approaches to pulse
storage ranging from adiabatic reduction of the photon group velocity and pulse-propagation control via
off-resonant Raman fields to photon-echo-based techniques. Furthermore, we derive an optimal control
strategy for storage and retrieval of a photon wave packet of any given shape. All these approaches, when
optimized, yield identical maximum efficiencies, which only depend on the optical depth of the medium.
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In quantum networks, states are easily transmitted by
photons, but the photonic states need to be stored locally to
process the information. Motivated by this and other ideas
from quantum information science, techniques to facilitate
controlled interactions between single photons and atoms
are now being actively explored [1–13]. A promising ap-
proach to a matter-light quantum interface uses classical
laser fields to manipulate pulses of light in optically dense
media such as atomic gases [2–11] or impurities embedded
in a solid state material [12,13]. The challenge is to map an
incoming signal pulse into a long-lived atomic coherence
(referred to as a spin wave), so that it can be later retrieved
‘‘on demand’’ with the highest possible efficiency. Using
several different techniques, significant experimental
progress towards this goal has been made recently [6–8].
A central question that emerges from these advances is
which approach represents the best possible strategy and
how the maximum efficiency can be achieved. In this
Letter, we present a physical picture that unifies several
different approaches to photon storage in �-type atomic
media and yields the optimal control strategy. This picture
is based on two key observations. First, we show that the
retrieval efficiency of any given stored spin wave depends
only on the optical depth d of the medium. Physically, this
follows from the fact that the branching ratio between
collectively enhanced emission into desired modes and
spontaneous decay (with a rate 2�) depends only on d.
The second observation is that the optimal storage process
is the time reverse of retrieval (see also [11,13] ). This
universal picture implies that the maximum efficiency is
the same for all approaches considered and depends only
on d. It can be attained by adjusting the control or the shape
of the photon wave packet.

A generic model for a quantum memory uses the �-type
level configuration shown in Fig. 1(a), in which a weak
(quantum) signal field with frequency � is detuned by �
from the jgi � jei transition. A copropagating (classical)
control beam with the same detuning � from the jsi � jei
transition is used to coherently manipulate the signal

propagation and to facilitate the light-atom state mapping.
In this system several different approaches to photon stor-
age can be taken. In electromagnetically induced trans-
parency (EIT) [2–7,12], resonant fields (� � 0) are used
to open a spectral transparency window, where the quan-
tum field travels at a reduced group velocity, which is then
adiabatically reduced to zero. In the Raman configuration
[9,10], the fields have a large detuning (j�j � �d) and the
photons are absorbed into the stable ground state jsi by
stimulated Raman transitions. Finally, in the photon-echo
approach [11,13], photon storage is achieved by applying a
fast resonant � pulse, which maps excitations from the
unstable excited state jei into the stable ground state jsi.

A common problem in all of these techniques is that the
pulse should be completely localized inside the medium at
the time of the storage. For example, in the EIT configu-
ration, a reduction in group velocity, which compresses the
pulse to fit inside the medium, is accompanied by narrow-
ing of the transparency window, which increases sponta-
neous emission. Similarly, in the photon-echo technique, if
a photon pulse is very short, its spectral width will be too
large to be absorbed by the atoms. To achieve the maxi-
mum storage efficiency one thus has to make a compro-
mise between the different sources of errors. Ideal
performance is only achieved in the limit of infinite d [2].

 

FIG. 1 (color online). (a) �-type medium coupled to a classi-
cal field with Rabi frequency ��t� and a quantum field with an
effective coupling constant g

����
N
p

. (b) Storage setup. The solid �
curve is the generic control shape for adiabatic storage; the
dashed line indicates a �-pulse control field for fast storage.
For retrieval, the inverse operation is performed.
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In our model, illustrated in Fig. 1(a), the incoming signal
interacts with N atoms in the uniform medium of length L
(z � 0 to z � L) and cross-section area A. The control field
is characterized by the slowly varying Rabi frequency
��t� z=c�. P�z; t� �

����
N
p P

ijgiihej=Nz, where the sum is
over all Nz atoms in a small region positioned at z, de-
scribes the slowly varying collective jgi � jei coherence.
All atoms are initially pumped into level jgi. As indicated
in Fig. 1(b), we first map a quantum field mode with slowly
varying envelope Ein�t� (nonzero on t 2 �0; T� and incident
in the forward direction at z � 0) to some slowly varying
mode of the collective jsi � jgi coherence S�z; t� �����
N
p P

ijgiihsj=Nz. Then starting at a time Tr > T, we per-
form the inverse operation to retrieve S back onto a field
mode. As we explain below, the optimal efficiency is
achieved by sending the retrieval control pulse in the back-
ward direction; storage followed by forward retrieval is,
however, also considered. The goal is to solve the optimal
control [14] problem of finding the control fields that will
maximize the efficiency of storage followed by retrieval
for given optical depth d � g2NL=��c� and input mode
Ein�t�. Here c is the speed of light, the atom-photon cou-
pling g � }��=�2@�0AL��

1=2 is assumed real for simplic-
ity, and } is the dipole matrix element. The efficiency is
defined as the ratio of the number of retrieved photons to
the number of incident photons.

Since the quantum memory operates in the linear re-
gime, an analysis of the interaction process where all
variables are treated as complex numbers is sufficient. In
this limit, the equations of motion read [15]

 �@t � c@z�E�z; t� � ig
����
N
p

P�z; t�; (1)
 

@tP�z; t� � ���� i��P�z; t� � ig
����
N
p

E�z; t�

� i��t� z=c�S�z; t�; (2)

 @tS�z; t� � i�	�t� z=c�P�z; t�: (3)

Here we have neglected the slow decay of S. For storage,
the initial conditions are E�0; t� � Ein�t�, E�z; 0� � 0,
P�z; 0� � 0, and S�z; 0� � 0. Being the shape of a mode,
Ein�t� is normalized according to �c=L�

R
T
0 jEin�t�j2dt � 1,

so the storage efficiency is given by �s � �1=L�
R
L
0 jS�z; T�j

2dz. For the reverse process, i.e., retrieval, the
initial conditions are E�0; t� � 0, E�z; Tr� � 0, P�z; Tr� �
0, and S�z; Tr� � S�L� z; T� for backward retrieval [16]
or S�z; Tr� � S�z; T� for forward retrieval. The total effi-
ciency in both cases is �back=forw � �c=L�

R
1
Tr
jEout�t�j2dt,

where Eout�t� � E�L; t�.
It is instructive to first discuss the retrieval process. In a

comoving frame t0 � t� z=c, using a normalized coordi-
nate � � z=L and a Laplace transformation in space � !
s, Eq. (1) gives E�s; t0� � i

���������������
d�L=c

p
P�s; t0�=s. Therefore,

the retrieval efficiency is given by

 �r � L�1

�
��d=�ss0��

Z 1
Tr
dt0P�s; t0��P�s0	; t0��	

�
; (4)

where L�1 means that two inverse Laplace transforms
(s! � and s0 ! � 0) are taken and are both evaluated at
� � � 0 � 1. To calculate �r, we insert E�s; t0� found from
Eq. (1) into Eq. (2) and use Eqs. (2) and (3) to find

 @tfP�s; t0��P�s0	; t0��	 � S�s; t0��S�s0	; t0��	g � ���2� d=s� d=s0�P�s; t0��P�s0	; t0��	: (5)

Equations (4) and (5) allow us to express �r in terms of the
initial and final values of the term inside the curly brackets
in Eq. (5). Assuming P�s;1� � S�s;1� � 0 (i.e., no ex-
citations are left in the atoms) and taking L�1, we get

 �r �
Z 1

0
d�

Z 1

0
d� 0kd��; �

0�S��; Tr�S
	�� 0; Tr�; (6)

 kd��; �
0� �

d
2
e�d�1�����

0�=2�I0�d
��������������������������������
�1� ���1� � 0�

p
�; (7)

where I0 is the zeroth-order modified Bessel function of the
first kind. Note that �r does not depend on � and ��t�.
Physically, this means that a fixed branching ratio exists
between the transfer of atomic excitations into the output
mode Eout�t� and the decay into all other directions. This
ratio only depends on d and S��; Tr�.

The efficiency �r in Eq. (6) is an expectation value of a
real symmetric operator kr��; � 0� in the state S���. It is,
therefore, maximized when S��� is the eigenvector [call it
~Sd���] with the largest eigenvalue �max

r of the real eigen-
value problem

 �rS��� �
Z 1

0
d� 0kd��; �

0�S�� 0�: (8)

To find ~Sd���, we start with a trial S��� and iterate the
integral in Eq. (8) several times. The resulting optimal spin
wave ~Sd�1� �� is plotted in the inset of Fig. 2 for d � 1,
10, 100, and d! 1. These shapes represent a compromise
attaining the smoothest possible spin wave with the least
amount of (backward) propagation.

We now discuss storage. We claim that if, for a given d,
�, and Ein�t�, we can find a control ��t� that retrieves
backwards from ~Sd�1� �� into E	in�T � t�, then the time
reverse of this control, �	�T � t�, will give the optimal
storage of Ein�t�. To prove this, we represent our retrieval
transformation as a unitary map U���t�� in the Hilbert
space H spanned by subspace A of spin-wave modes,
subspace B of output field modes, as well as a subspace
containing (empty) input and reservoir field modes (note
that it is essential to include the reservoir modes, since the
dynamics is unitary only in the full Hilbert space of the
problem). For a given unit vector jai in A (a given spin
wave), the retrieval efficiency is �r � jhbjU���t��jaij2 �
jhajU�1���t��jbij2, where we have used the unitarity of
U���t��, and where jbi is a normalized projection of
U���t��jai on B, i.e., the mode onto which the spin wave
is retrieved. Introducing the time-reversal operator T [15],
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we find �r � jhajTTU�1���t��TT jbij2. One can show
[15] that the time reverse of the inverse propagator
TU�1���t��T is simply U��	�T � t�� so that we have
�r � jhajTU��	�T � t��T jbij2. This immediately tells

us that the time-reversed control �	�T � t� will map the
time reverse of the retrieved pulse into the complex con-
jugate of the original spin-wave mode with the same
efficiency. The optimal spin waves are, however, real so
that complex conjugation plays no role. Furthermore, the
storage efficiency cannot exceed �max

r since the time re-
verse of such storage would then by the same argument
give a retrieval efficiency higher than �max

r , which is a
contradiction. Optimal storage is thus the time reverse of
optimal backward retrieval and has the same efficiency
�max
s � �max

r (and involves the same optimal spin wave).
To identify the input modes, for which the optimal

storage can be achieved, we use Eqs. (1)–(3) to analytically
solve the retrieval problem in two important limits: ‘‘adia-
batic’’ and ‘‘fast.’’ The adiabatic limit, whose two special
cases are the Raman and the EIT regimes discussed above,
corresponds to a smooth control field, such that P can be
adiabatically eliminated in Eq. (2). Using the Laplace
transform technique to eliminate E from Eqs. (1) and (2),
we reduce Eqs. (2) and (3) to a simple differential equation
on S. We solve it, compute E, and take the inverse Laplace
transform to obtain

 E out

�
Tr �

L
c
� t

�
� �

����������
d�L
c

s Z 1

0
d�

��t�
�� i�

e���d��h�t��=���i��I0�2
�����������������
�d�h�t�

q
=��� i���S�1� �; Tr�; (9)

where h�t� �
R
t
0 dt

0j��t0�j2. We will now show that for a given d, �, and spin wave S���, one can always find a control
��t� that maps S��� to any desired normalized output mode E2�t� of duration Tout, so that Eout�Tr �

L
c � t� �

������
�r
p

E2�t�
(provided we are in the adiabatic limit Toutd�� 1 [15] ). To do this, we replace Eout�Tr �

L
c � t� in Eq. (9) with

������
�r
p

E2�t�,
integrate the norm squared of both sides from 0 to t, change variables t! h�t�, and get

 �r
Z t

0
dt0jE2�t0�j2 �

d�L
c

Z h�t�

0
dh0

��������Z 1

0
d�

1

�� i�
e���d��h

0�=���i��I0�2
�������������
�d�h0

q
=��� i���S�1� �; Tr�

��������2
; (10)

which allows us to solve numerically for the unique h�t�.
Then j��t�j � �ddt h�t��

1=2, while the phase is found by
inserting h�t� into Eq. (9). Optimal storage controls then
follow from the time-reversal argument above. Figure 2
shows a particular Gaussian-like input mode Ein�t� and the
corresponding optimal storage control shapes � [17] for
the case � � 0 and d � 1, 10, 100, as well as the limiting
shape of the optimal � as d! 1. As we have argued, the
normalized atomic mode S��; T�=

����������
�max
s

p
, into which Ein�t�

is stored using these optimal control fields, is precisely
~Sd�1� ��, the optimal mode to retrieve backwards shown
in the inset of Fig. 2.

The fast limit corresponds to a short and powerful
resonant retrieval control satisfying �� d� that imple-
ments a perfect � pulse between the optical and spin
polarizations, P and S. This retrieval and the correspond-
ing storage technique are similar to the photon-echo
method of Ref. [11,13]. Again using the Laplace transform
technique, we find for a perfect � pulse that enters the
medium at time Tr
 

Eout

�
Tr �

L
c
� t

�
� �

����������
�dL
c

s Z 1

0
d�e��tJ0�2

�����������
�d�t

p
�


 S�1� �; Tr�; (11)

where J0�x� � I0�ix�. Since the fast retrieval control can-
not be shaped, at each d, there is, thus, only one mode [of
duration T � 1=��d�] that can be stored optimally. This
mode is the time reverse of the output mode in Eq. (11)
retrieved from the optimal spin wave ~Sd.

We will now show that time reversal cannot only be used
to deduce optimal storage from optimal retrieval, but can
also be used to find ~Sd in the first place. In the discussion
above, the normalized projection of U�1jbi on A (call it
ja0i) might have a component orthogonal to jai. In this
case, the efficiency of U�1 as a map from B to A will be
�0r � jha0jU�1jbij>�r. Now if the normalized projection
of Uja0i on B is not equal to jbi, the map U acting on ja0i
will similarly have efficiency �00r > �0r > �r. Therefore,
such iterative application of U and U�1 converges to the
optimal input in A and the corresponding optimal output in
B. Indeed, a detailed calculation [15] shows that the search
for the optimal spin wave by iterating Eq. (8) precisely
corresponds to retrieving S��� with a given control, time
reversing the output, and storing it with the time-reversed
control profile.

This time-reversal optimization procedure for finding
the optimal jai 2 A can be used to optimize not only
retrieval, but also any map including storage followed by

 

FIG. 2 (color online). Input mode Ein�t� (dashed line) and
control fields ��t� (in units of

������������
d�=T

p
) that maximize for this

Ein�t� the efficiency for resonant adiabatic storage (alone or
followed by backward retrieval) at d � 1, 10, 100, and d!
1. Inset: optimal modes ~Sd�1� �� to retrieve from backwards at
d � 1, 10, 100, and d! 1 (� � z=L). These are also normal-
ized spin waves S��; T�=

����������
�max
s

p
in adiabatic and fast storage if it

is optimized alone or followed by backward retrieval.
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retrieval. For storage followed by backward retrieval, this
procedure yields ~Sd�1� �� and maximum efficiency
�max

back � ��
max
r �

2, since ~Sd�1� �� optimizes both storage
and backward retrieval. Figure 3 demonstrates that for
resonant adiabatic storage of the field mode in Fig. 2
followed by backward retrieval, optimal controls result in
a much higher efficiency �max

back than naı̈ve square control
pulses on [0, T] with power set by vgT � L (�square curve),
where vg � c�2=�g2N� is the EIT group velocity [3].

For the case of storage followed by forward retrieval,
iterations yield the maximum efficiency �max

forw plotted in
Fig. 3. It is less than �max

back since with backward retrieval,
storage and retrieval are each separately optimal, while for
forward retrieval a compromise has to be made. From a
different perspective, forward retrieval makes it more dif-
ficult to minimize propagation since the excitation has to
propagate through the entire medium.

In conclusion, we have shown that the performance of
EIT, Raman, and photon-echo approaches to a quantum
light-matter interface can be understood and optimized
within a universal physical picture based on time reversal
and a fixed branching ratio between loss and the desired
quantum state transfer. For a given optical depth d, the
optimal strategy yields a universal maximum efficiency
and a universal optimal spin wave, thus, demonstrating a
certain degree of equivalence between these three seem-
ingly different approaches. We showed that the optimal
storage can be achieved for any smooth input mode with
Td�� 1 and any � and for a class of resonant input
modes satisfying Td�� 1. The presented optimization of
the storage and retrieval processes leads to a substantial
increase in the memory efficiency.

The results described here are of direct relevance to on-
going experimental efforts, where optical depth d is limited
by experimental constraints such as density of cold atoms,
imperfect optical pumping, or competing nonlinear effects.
For example, in two recent experiments [6,7], d� 5 was
used. �max

back and �square curves in Fig. 3 indicate that at this

d, by properly shaping the control pulses, the efficiency
can be increased by more than a factor of 2. Direct com-
parison to experiment, however, will require the inclusion
of decoherence processes and other imperfections. In
Ref. [15], we discuss some of these imperfections, as
well as the details of the present analysis and its extensions
to atomic ensembles enclosed in a cavity and to inhomoge-
neously broadened media.

Finally, we note that the time-reversal based iterative
optimization we suggest is not only a convenient mathe-
matical tool but is also a readily accessible experimental
technique for finding the optimal spin-wave and optimal
input-control pairs: one just has to measure the output
mode and generate its time reverse. Indeed, our optimiza-
tion procedure has been recently verified experimentally
[18]. We also expect this procedure to be applicable to the
optimization of other linear quantum maps both within the
field of light storage (e.g., light storage using tunable
photonic crystals [19] ) and outside of it.
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FIG. 3. �max
back (solid line) and �max

forw (dotted line) are maximum
total efficiency for storage followed by backward or forward
retrieval, respectively. �square (dashed line) is the total efficiency
for resonant storage of Ein�t� from Fig. 2 followed by backward
retrieval, where the storage control field is a naı̈ve square pulse.
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