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Within a scalar model theory of gravity, where the interaction between particles is given by the half-
retarded plus half-advanced solution of the scalar wave equation, we consider an N-body problem: We
investigate configurations of N particles which form an equilateral N angle and are in helical motion about
their common center. We prove that there exists a unique equilibrium configuration and compute the
equilibrium radius explicitly in a post-Newtonian expansion.
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Self-gravitating systems with helical symmetry have
recently attracted considerable interest in the context of
the numerical evolution of coalescing neutron star and
black hole binaries [1,2]. Since numerical codes simulating
relativistic collapse cannot evolve for large times, initial
data should be close to the final plunge. A reasonable
approximation to such initial data might be to consider
data given by spacetimes with a helical Killing vector, the
reason being that gravitational radiation tends to reduce the
eccentricity of orbits. However, not only for numerical
purposes but also from a more systematic point of view,
spacetimes with a helical Killing vector form a class of
time-independent solutions of the Einstein equations
which are interesting in themselves and about which
little—including their existence—is known. The simplest
class of examples are N point particles of equal mass m in
Newtonian theory forming an equilateral N angle and
uniformly rotating about their common center. We con-
struct the analog of these solutions in a special relativistic
scalar theory of gravity, with particles interacting via the
half-retarded plus half-advanced (‘‘symmetric’’) solution
of the wave equation. The case N � 2 (and allowing for
different masses) has been considered in Refs. [3,4]; the
electromagnetic N � 2 case has been treated in the semi-
nal paper [5]. In this Letter, we perform a careful study of
the symmetric interaction of particles in helical motion
which is absent in the literature even in the antipodal (N �
2) case. This serves the purpose of proving the following
result: Given m and the angular velocity � of the helical
motion, there exists, like in Newtonian theory, exactly one
radius �re, for which the symmetric interaction is balanced
by the centrifugal force.

Although scalar theories of gravity are known to dis-
agree with experiment, they provide simple test models for
relativistic gravity, mainly because they have just 1 degree
of freedom; see [6]. Scalar theories derive from an action

 S �
1

2

Z
M
g���;��;�d4x� 4�

Z
M
�F���d4x;

where �M;g��� is Minkowski space and � the energy

density of matter; we have set G � 1, c � 1. The resulting
equation for � is �� � 4��F0���. When F�0� is chosen
to be 1, the associated theory has the correct Newtonian
limit. The choice F��� � exp� corresponds to the model
theory recently proposed in Ref. [6]. To further simplify
matters, we make the choice F��� � 1��, which corre-
sponds to a first-order expansion; see [7,8]; this leads to the
linear wave equation for �:

 �� � 4��: (1)

We consider a family of N structureless point particles
of equal mass m; let �xn�sn� be the world line of the nth
particle, where sn denotes proper time; then

 ��x� � m
XN�1

n�0

Z
��4��x� �xn�sn��dsn;

so that the particle equations of motion are

 m
d
dsn
��1��j �xn� _�x

�
n � � �@���j �xn � 0 (2)

for n � 0; 1; . . . ; �N � 1�, where the field �j �xn acting on
the nth particle is the symmetric solution of (1) generated
by the remaining particles [9].

In helical symmetry, fields are invariant under the action
of a helical Killing vector �, whose components are �t �
1, �� � � � const, �r � 0 � �z, and whose Lorentz
norm is �2 � �1��2r2; here �r; �; z� are cylindrical
coordinates associated with ~x � �x; y; z�. Helical motion
is motion tangent to the Killing orbits, i.e., circular motion
with constant angular velocity � in planes z � const.
When we define � � ���t, we find that a field  on
�M;g��� is helically symmetric, if it is of the form
 ��; r; z�, where  is periodic in� with period 2�; helical
motion is any motion with ��; r; z��s� � const.

Helical solutions of the wave equation.—We consider
the wave equation (1) for a helically symmetric source
��t; ~x� � �h��; r; z�, where �h is 2�-periodic in �; we
assume �h � 0 for r 	 ��1 so that the source is confined
within the light cylinder r � ��1, where velocities are less
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than the speed of light. The retarded solution �ret�t; ~x� and
the advanced solution �adv�t; ~x� of (1) are given by

 �ret=adv � �
Z
R3

��t
 j ~x� ~x0j; ~x0�
j ~x� ~x0j

d3x0: (3)

The solutions �ret and �adv share the symmetries of the
source, i.e., �ret � �ret��; r; z�. To make this explicit, we
first introduce cylindrical coordinates �t; r; �; z� and
�r0; �0; z0� associated with �t; ~x� and ~x0 in (3); we then
find that the integrand can be regarded as a 2�-periodic
function of 	 � ���0, which further entails that
 

�ret � �
Z 2�

0
d	

Z ��1

0
r0dr0

�
Z 1
�1

dz0
�h��� 	��j ~x� ~x0j; r0; z0�

j ~x� ~x0j
;

where j ~x� ~x0j2� r2�r02�2rr0cos	��z�z0�2. Conse-
quently, �ret � �ret��; r; z� with 2� periodicity in �.
Note that the advanced solution �adv��; r; z� arises from
�ret��; r; z� by making the replacement �! ����.

We proceed by defining a variable �0 via

 �0 ���	���r2�r02�2rr0cos	��z�z0�2�1=2: (4)

For fixed �; r; r0 <��1; z; z0, the map 	 � �0 is mono-
tonically decreasing and, thus, a diffeomorphism. This
follows from a straightforward computation, where we
invoke de l’Hospital’s rule (for r � r0, z � z0, 	 � 2k�,
k 2 Z). Performing a change of integration variables from
	 to �0, where we use that a shift by 2� in 	 causes a shift
by �2� in �0, we eventually arrive at
 

�ret � �
Z 2�

0
d�0

Z ��1

0
r0dr0

�
Z 1
�1

dz0
�h��

0; r0; z0�

���0 � 	��2rr0 sin	
:

In this integral, 	 is to be regarded as a function of the
other variables, implicitly given by (4). In fact, 	 �
	����0; r; r0; z� z0�, where 	��; r; r0; z� satisfies

 �� 	��
�
�r� r0�2 � 4rr0 sin2 	

2
� z2

�
1=2
� 0: (5)

We call 	��; r; r0; z� the retarded angle associated with �
(and the particular choice of r, r0, z). The following prop-
erties of 	 are immediate from the above discussion:

 

d	
d�

>0; 	���2�;r;r0;z��	��;r;r0;z��2�: (6)

Finally, regarding the retarded solution �ret��; r; z� as
the convolution of an integration kernel with the source
�h��

0; r0; z0� yields the so-called retarded kernel

 Kret��; r; r0; z� � �
1

�� 	��2rr0 sin	
; (7)

where 	 � 	��; r; r0; z�. As a consequence of (6),
Kret��; r; r

0; z� is 2�-periodic in �.

As noted above, the advanced kernel Kadv��; r; r
0; z� is

given in analogy to (7), where �! ���� and 	! 	adv,

 �� 	adv ��
�
�r� r0�2 � 4rr0 sin2 	adv

2
� z2

�
1=2
� 0:

From (5) we conclude that ��	���; r; r0; z�� satisfies this
equation; hence, 	adv��; r; r

0; z� � �	���; r; r0; z�. By
periodicity of Kret, we thus infer the important relation

 Kadv��; r; r
0; z� � Kret�2���; r; r

0; z�: (8)

Symmetric solution for a point source.—The simplest
source that is compatible with helical symmetry is a point
mass m in circular motion. Let � ��; �r <��1; �z � 0� be the
position of the point particle; then the density is

 �h��; r; z� � m�1��2 �r2�1=2���� ���
��r� �r�

�r
��z�;

and the associated retarded potential reads

 �ret��; r; z� � m�1��2 �r2�1=2Kret��� ��; r; �r; z�:

The radial component of the force at ��; r; z� � � ��; �r; �z� is
given by @r�ret; when r � �r, z � 0, it simplifies to

 �@r�ret�jr��r �
m
2
�1��2 �r2�1=2@�rKret��� ��; �r; �r; 0�;

where we have used the symmetry of the retarded kernel in
r and �r, i.e.,Kret��; r; �r; z� � Kret��; �r; r; z�. Consequently,
the fields �ret and �@r�ret�jr��r at positions � � ��, r � �r,
and z � 0 are completely described by Kret��; �r; �r; 0� and
its derivatives.

To obtain the kernel Kret��; �r; �r; 0�, we first investigate
the retarded angle 	��; �r; �r; 0�. It ensues from (5) that � �
0 corresponds to 	 � 0 and, thus, � � 2� to 	 � 2� by
(6). Hence, for � 2 �0; 2��, sin	2 is non-negative, and the
defining equation for 	��; �r; �r; 0� thus becomes

 �� 	� 2��r sin
	
2
� 0: (9)

We find	 � � in the limit �r! 0; for �r > 0, however,	>
�, unless 	 � 0 � � or 	 � 2� � �; the difference
between the angle � and the retarded angle 	 is largest
when 	 � �. Keeping � 2 �0; 2�� fixed (so that 	 is in
the same interval), we obtain

 @ �r	 �
2� sin	2

1���r cos	2
> 0; (10)

hence, in addition to being increasing in �, 	��; �r; �r; 0� is
increasing, with a range ��;	1���< 2��, also when
viewed as a function of �r.
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Finally, the results (9) and (10) lead to
 

Kret��; �r; �r; 0� � �
1

2�r sin	2

1

1���r cos	2
;

@ �rKret �
�1���r�2 � 4��r sin2 	

4

2�r2 sin	2

�
1

1���r cos	2

�
3
:

(11)

The kernel Kret is manifestly negative and monotonically
increasing in �r, since @ �rKret is positive; for �r! 0, both
expressions diverge, while the limit is finite for �r! ��1.

Since Kret��; �r; �r; 0� � Kadv��; �r; �r; 0� by (8), the re-
tarded and advanced potentials at the antipodal point (� �
��� �, r � �r, z � 0) are equal; the same is true for the

radial components of the forces. The tangential compo-
nents, however, are not equal but opposite, since
@�Kretj��� � �@�Kadvj��� by (8). Therefore, if we con-
sider the symmetric solution ���; r; z� of (1), i.e.,

 ���; r; z� � 1
2��ret��; r; z� ��adv��; r; z��; (12)

then the � derivatives of the two terms cancel, so that
@�� � 0 at the antipodal point of a point mass. This fact is
a necessary prerequisite for a system of two (or more)
particles in circular motion to be in equilibrium.
Henceforth, we consider only symmetric potentials (12).

Equilibrium configuration for N point masses.—We
now consider the helical configuration depicted in Fig. 1:
Let n � 0; 1; . . . ; �N � 1� be N point masses of equal mass
m, equidistantly distributed along a circle of radius �r at z �
0 and uniformly rotating about their common center—the
nth particle’s position is thus given by � ��n; �r; 0�with ��n �
2�n=N. Let �n��; r; z� denote the symmetric potential
generated by the nth particle. At the position ��; r; z� �
�0; �r; 0� of the first point mass, the total potential � is then
given as

P
n	1�n�0; �r; 0�; hence,

 ��0; �r; 0� �
m
2
�1��2 �r2�1=2

XN�1

n�1

�Kret � Kadv�� ��n; �r; �r; 0�:

Making use of (8) results in

 ��0; �r; 0� � m�1��2 �r2�1=2
XN�1

n�1

Kret� ��n; �r; �r; 0�;

�@r��j �r �
m
2
�1��2 �r2�1=2

XN�1

n�1

@�rKret� ��n; �r; �r; 0�

(13)

for the potential and the radial component of the force at
�0; �r; 0�, respectively. The tangential component of the
force, i.e., @����; �r; 0�j��0, vanishes, since @�Kadvj� �

�@�Kretj2���, and, thus, @�Kadvj�n
� �@�Kretj�N�n

;
likewise, @z��0; �r; z�jz�0 � 0, which is a simple conse-
quence of the mirror symmetry in z. The equation of
motion (2) for the first particle thus reduces to

 �@r��0; r; 0��jr��r � �1���0; �r; 0��
�2 �r

1��2 �r2 � 0; (14)

where we have used the independence of the (proper) time
of � at the particle’s position and m��x�0 � �@

��2�=�2�2�,
where �2 � �1��2r2, for the centrifugal term. The
equations for the remaining (N � 1) particles are identical,
since the symmetry of the configuration entails that none of
the particles is distinguished. Hereby, the system of 3N
equations (2) reduces to one single equation (14).

We conclude that the configuration of Fig. 1 is in equi-
librium, if condition (14) holds, i.e., if the radial force
acting on each particle is balanced by the centrifugal force.
As follows from (11), the potential ��0; �r; 0� is negative
and monotonically increasing for all ��r < 1; it diverges
for �r! 0 and converges to zero when ��r! 1.
Consequently, there exists a unique radius �r0 such that �1�
��0; �r; 0�� is negative for all �r < �r0 and positive for �r > �r0.
The term �@r��0; r; 0��jr��r is positive for all ��r < 1; it
diverges as �r! 0, and it goes to zero when ��r! 1.
Combining the results, it follows that the function on the
left-hand side of (14) is positive for all �r � �r0 and goes to
�1 as ��r! 1. We thus conclude that this function as-
sumes the value zero at least once in the interval �r 2
��r0;�

�1�, so that there exists at least one radius �re for
which condition (14) is satisfied and the configuration is in
equilibrium. In the following, we prove that radius �re is
unique by showing that the left-hand side of (14) is de-
creasing for �r 2 � �r0;��1�.

The proof would be trivial if the radial force
�@r��0; r; 0��jr��r were decreasing in �r [since the second
term on the left-hand side of (14) is manifestly decreasing
for �r > �r0]. However, whether monotonicity of
�@r��0; r; 0��jr��r actually holds is unclear, in general.
Namely, it can be shown numerically that  ��; �r� �
@�r��1��2 �r2�1=2@�rKret��; �r; �r; 0�� does not have a sign:
There exists a connected domain D in the set �0; 2���
�0;��1� such that  is positive when ��; �r� 2 D and
negative when ��; �r� =2 �D—this is in stark contrast to the
Newtonian case, where  is negative for all ��; �r�. The
main properties of D are the following: minD �r 

3=4 ��1; hence, negativity holds for small �r, where veloc-
ities are small compared to c so that Newtonian gravity is a
good approximation to scalar gravity; maxD� 
 1=4;

 

–
e

–
0 = 0

–µ1 = 2π N

–µN − 1

r

µ

FIG. 1. N point particles of equal mass m in uniform circular
motion—the mutual interaction is given by the symmetric
potential (half-retarded plus half-advanced potential). We prove
that there exists a unique radius �re such that the configuration is
in equilibrium.
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hence, the radial force is decreasing at least when the
number of particles is sufficiently small, i.e., when ��n >
1=4 8 n; typical values of  on D are by several orders of
magnitude larger than typical values of j j on
��0; 2�� � �0;��1��n �D—this complicates matters when
one seeks to prove that the sum over all ��n is negative.
Despite this last remark, numerical evidence suggests that
�@r��0; r; 0��jr��r is, in fact, decreasing irrespective of the
number of particles; a rigorous proof, however, seems
difficult to obtain.

In our proof, we therefore proceed along different lines.
The derivative of the function on the left-hand side of (14)
reads
 

m
XN�1

n�1

�
@ �r

�
1

2
�1��2 �r2�1=2@ �rKret� ��n; �r; �r; 0�

�

� @ �r��1��2 �r2�1=2Kret� ��n; �r; �r; 0��
�2 �r

1��2 �r2

�

� �1���0; �r; 0��@�r

�
�2 �r

1��2 �r2

�
: (15)

Since the last line is clearly negative when �r > �r0, in order
to show that the whole function is negative, it suffices to
prove that each of the terms in braces is negative individu-
ally. To this end, let 	 � 	� ��n; �r; �r; 0� for some n; then
each individual term in braces has the form

 

�1��2 �r2��1=2

4�r3�1��2 �r2 cos	2�
5 sin	2

P
�
��r; cos

	
2

�
; (16)

where P� �v; cos	2� is a complicated polynomial of degree
eight in �v � ��r < 1 and of degree four in cos	2 . In a
second step, we replace cos	2 by a variable � defined
through cos	2 � �v�1�1� �1� �v2���. Since �1 � cos	2 �
1, the permitted range of � is

 

1

2
<

1

1� �v
� � �

1

1� �v
: (17)

Using � leads to a simple representation of P� �v; cos	2�:

 P � �
3� 8�� �2�5� 4 �v2� � �3�2� 4 �v2� � 2�4 �v4

�1� �v2��4 :

The roots of the polynomial P are explicitly given by �v2 �

��2�1� ��
����
�
p
�, where the discriminant � reads

 � � �2��� 1
2���� �

���
2
p
� 1����� �

���
2
p
� 1��: (18)

Evidently, � is non-negative if and only if � � �1�
���
2
p

or � 2 �
���
2
p
� 1; 1

2�. As a consequence, the roots of P lie
outside of the admissible domain (17) of the variables
� �v; ��. Since, in addition, P< 0 for �v! 0 and � � 1, it
follows that P is negative everywhere on the admissible
� �v; �� domain, or, equivalently,

 P
�
��r; cos

	
2

�
< 0 8 � �r; 	� 2 �0;��1��0; 2��: (19)

With P< 0, the expression (16) is negative, which com-

pletes the proof of the claim.

Post-Newtonian expansion.—For a given number of
particles, the equilibrium radius �re of the configuration in
Fig. 1 is a function of the angular velocity � and the mass.
This functional dependence cannot be made explicit, since
this would involve, among other things, an explicit knowl-
edge of the retarded angle (9). [For a two-particle system,
�re can be given as a (nonexplicit) function of the orbital
velocity ��re—see [3]—which, of course, does not lead to
an explicit solution for �re.]

It is feasible, however, to analyze the equilibrium con-
dition (14) by means of a post-Newtonian approximation
scheme. With the support of a computer algebra program,
necessary manipulations can be done in a straightforward
way, and we eventually obtain a post-Newtonian expansion
of �re; here, we merely state some results.

Let ! be the angular velocity as measured in standard
units, i.e., �!� � s�1; clearly, ! � �c, where c is the
speed of light; furthermore, let G be the gravitational
constant and M � Nm the total mass of the N-particle
configuration of Fig. 1. We define a quantity R (with unit
length) and a dimensionless quantity x according to

 R � �GM!�2�1=3; x � �GM!c�3�1=3:

In terms of R, x, the post-Newtonian expansion of �re is

N �re

2 1
2R�1� x

2=12� 7x4=72�O�x6��

3 1��
3
p R�1� 7x2=72� 0:065x4 �O�x6��

..

. ..
.

105 1:228R�1� 0:273x2 � 0:465x4 �O�x6��

For highly relativistic configurations, numerical inves-
tigations indicate that �re / ��1 as �! 1, so there does
not exist an innermost circular orbit.
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