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We show that nonlinear resonances in a classically mixed phase space allow us to define generic,
strongly entangled multipartite quantum states. The robustness of their multipartite entanglement
increases with the particle number, i.e., in the semiclassical limit, for those classes of diffusive noise
which assist the quantum-classical transition.
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The ultimate success of the quantum information and
computation program will depend on our theoretical under-
standing and experimental control of quantum entangle-
ment. In order to compete with the available classical
supercomputing resources, a future quantum computer
will have to be composed of a large, i.e., at least meso-
scopic number of qubits, and their coherence will need to
be preserved over a significant period of time.
Contemplating the fact that entanglement is a manifesta-
tion of multiparticle coherence, and that the density of
states explodes exponentially with the particle number, it
is easy to appreciate the dimension of the challenge ahead.

So far, little is known about entanglement in open quan-
tum systems—where ‘‘open’’ refers to the unavoidable
coupling to uncontrolled degrees of freedom in the ‘‘envi-
ronment,’’ which eventually induces decoherence in the
system dynamics. Only recently [1–7] have there been first
theoretical and experimental attempts to characterize en-
tanglement dynamics under decoherence, but a sufficiently
general picture still has to emerge. In particular, most
studies did so far focus on specific classes of highly en-
tangled W, GHZ, or cluster states, and on their specific
robustness against certain sources of decoherence [8,9]. As
the number of particles increases, the faithful experimental
generation and probing of these states tends to become
more and more difficult, with rapidly increasing experi-
mental overhead. Furthermore, whether and in which sense
their entanglement properties can be considered as ‘‘ge-
neric’’ is a largely open issue, given the complicated
topology of state space.

In our present contribution, we will adopt a different
perspective, which imports some generic features of quan-
tum dynamics with underlying mixed, regular-chaotic
phase space structure, i.e., from quantum chaos [10]. In
contrast to earlier studies of the impact of mixed phase
space dynamics [11–13] and nonlinear light-matter inter-
action [14,15] on bipartite entanglement, we are here in-
terested in the multipartite limit of large particle numbers.
This is of crucial importance in the context of entangle-
ment scaling alluded to above and will be identified with

the semiclassical limit of progressively finer (quantum)
resolution of classical phase space structures, by a suitable
definition of many-particle basis states in terms of classical
phase space coordinates. We will see that nonlinear reso-
nances, which are ubiquitous in classical Hamiltonian
systems [16], naturally define strongly—though not maxi-
mally—entangled multipartite quantum states. This non-
optimality is compensated by the nonlinear resonance
structure providing a natural shelter against certain types
of decoherence: Indeed, the robustness of the associated
multipartite entangled states is found to increase with the
number of particles, i.e., in the semiclassical limit.

We start out with a system of k qubits that lives on
a Hilbert space with tensor structure H �H 1 �
H 2 � � � � �H k, where each factor space H j has dimen-
sion two. The ‘‘computational basis’’ fjiig, which spans
H , is given by the k-particle product states (i.e., by binary
k-strings, which we identify with the binary representation
of i � 0 . . .N � 1), and has dimension N � 2k. Maps on
classical phase space can be implemented efficiently in
such systems after suitable identification of the computa-
tional with the position basis fjqiig, upon the substitution
qi � i=N [17–19]. Then, the corresponding momentum
basis fjpiig is given by the discrete Fourier transform of
fjqiig [20]. Thus, the phase space is wrapped on a torus,
with a phase space area 1=N occupied by a single position
basis state. Coherent (or minimum uncertainty) states are
obtained as Gaussian wave packets of width 1=

����
N
p

both in
position and momentum [21]. Accordingly, the effective
Planck constant is given by @eff � 1=2�N, and the semi-
classical limit @eff ! 0 of arbitrary phase space resolution
by a single quantum state is approached as the particle
number k tends to infinity.

Given this quantum coarse graining of phase space, we
will now monitor the time evolution of the multipartite
entanglement of a quantum state initially prepared as a
minimum uncertainty Gaussian wave packet, launched at
different positions on the torus (which we will unfold as a
unit square, for the ease of illustration). We propagate the
wave packet by the unitary operator
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 Ut � �eiN�2 cos�2�q̂�eiN�1 cos�2�p̂��t; (1)

(with t integer) which follows from the quantization of the
classical Harper map

 

p0 � p� �1 sin�2�q�
q0 � q� �2 sin�2�p0�

�mod1�: (2)

Equation (2) describes a particle subject to a periodic
impulse, with a position-dependent amplitude [22], and
exhibits a transition from regular to chaotic dynamics as
the kicking strengths �1, �2 are tuned from �1, �2 & 0:11
to �1, �2 * 0:63. Here, we employ the fixed values �1 �
�2 � � � 0:4964, what defines a mixed phase space struc-
ture as depicted in the inset of Fig. 1.

The quantum evolution (1) modifies the decomposition
of the evolved state j ti in the computational basis, and
thus the entanglement of the k degrees of freedom defined
by the constituent qubits. In order to assess the nonclassical
correlations inscribed into the evolved state, we use the
k-partite concurrence Ck as defined in [1]. On pure states,
this quantity is given by the square root of a balanced
average over the squared concurrence of all nontrivial

bipartitions of the k-set under scrutiny, and vanishes ex-
clusively for k-separable states [1,23]. Moreover, it has the
particularly advantageous property Ck�j�i � j ik�1� �
Ck�1�j ik�1�, 8 j�i 2H 1; j ik�1 2H 2 � . . . �H k.
The latter allows us to compare the entanglement inscribed
into quantum states composed of an increasing number of
subsystems. Furthermore, Ck has a generalization for
mixed states (through the convex roof construction [1]),
which we will make use of below.

We start out with a short inspection of the entanglement
dynamics under purely coherent dynamics, to set the scene.
The evolution is generated by application of Ut, where the
integer t counts the number of applications and defines a
discrete time. The open symbols in Fig. 1 represent Ck�t�,
for two different initial positions (also indicated by filled
triangles and squares in the inset) of the initial minimum
uncertainty state in phase space—either within an elliptic
island (q � p � 0:25; open squares) or within the chaotic
phase space component (q � 0:25, p � 0:0; open tri-
angles). Since the computational basis is encoded in posi-
tion states, both initial conditions define the same initial
value Ck�0� (C5�0� � 1:074386 and C8�0� � 1:316826,
respectively) of concurrence. Since, on the quantum level,
chaotic dynamics is tantamount of strong coupling in any
basis, it immediately follows that Ck will increase rapidly
for the initial condition placed in the chaotic domain and
saturate once equilibrated over the chaotic eigenstates [11–
13] of the quantized Harper map—this is indeed observed
in the figure. Note, however, that the saturation level does
not coincide with the maximal possible value of Ck on the
pure states, but rather with its most probable value (which
approaches the maximal value in the limit k! 1 [24]).
Also note that, for k > 3, this value is larger than the
k-partite entanglement of GHZ states, which are maxi-
mally entangled only in the special case k � 3 [25].
Indeed, CGHZ

k�5 � 1:369286, and CGHZ
k�8 � 1:408798 (indi-

cated by black arrows in Fig. 1), approaching our minimal
uncertainty state’s initial multipartite entanglement with
increasing k. Finally, the qualitative behavior of Ck�t� for
an initial state lying in the chaotic sea depends only weakly
on the number of qubits, as evident from a comparison of
both panels in Fig. 1: For k � 8 (corresponding to a Hilbert
space dimension N � 256), the time evolution is very
smooth, while for k � 5 (Hilbert space dimension N �
32), still some fluctuations—essentially a finite size ef-
fect—are observed.

For the state initially placed within the elliptic island,
size does matter: for k � 5, the initial coherent state cannot
be well accommodated within the elliptic island in phase
space (due to the finite size of @eff) and exhibits non-
negligible tunneling coupling to its chaotic environment.
Consequently, as time proceeds, the coherently evolved
state spreads more and more over the chaotic phase space
component, and its entanglement finally reaches essen-
tially the same value as for the initial condition within
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FIG. 1 (color online). Evolution of multipartite concurrence
Ck for two different numbers of qubits: k � 5 (top), k � 8
(bottom). Open symbols refer to unitary dynamics, while filled
symbols represent the evolution under the diffusive noise de-
scribed by Eq. (3). Squares correspond to an initial condition
inside the nonlinear resonance island, triangles to initial con-
ditions within the chaotic sea, in the classical phase space
spanned by p and q (see inset). For different qubit numbers,
the ratio of noise strength to the effective size of Planck’s
quantum, �=@eff , is kept constant (� � 0:04 for k � 5, and � �
0:005 for k � 8). Black arrows indicate the value of Ck for
k-partite GHZ states.
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the chaotic domain, just after considerably longer time—
essentially determined by the relevant tunneling matrix
elements (which, in general, will be strongly fluctuating
under small parameter changes [26,27]). In contrast, for
k � 8, tunneling from the island into the chaotic sea occurs
on a much longer time scale (which, on average, increases
exponentially with @eff) and remains invisible on the time
scale covered in Fig. 1. The small oscillations of Ck�8�t�
are due to the spreading of the initial wave packet along the
regular island’s tori.

This screening of the initial state from the chaotic sea
when initially placed within the elliptic island, more and
more efficient with increasing particle number, has an
immediate consequence for the robustness of the state’s
multipartite entanglement under the influence of decoher-
ence, as illustrated by the filled symbols in Fig. 1: For
chaotic initial conditions, an initial rise of Ck is rather
quickly overruled by the loss of multiparticle coherence
and hence of entanglement, and this is once again largely
independent of k. However, for initial conditions within the
island, k � 5 again leads to asymptotically the same be-
havior as for the chaotic initial condition, while k � 8
induces entanglement dynamics almost completely unaf-
fected by the noise. Thus, for sufficiently large k, equiva-
lent to sufficiently small @eff , and correspondingly
suppressed tunneling rates, the classical nonlinear reso-
nance creates strongly entangled multipartite states which,
in addition, are robust against noise. This is further illus-
trated in Fig. 2, where Ck�8�t � 16� is plotted for different
initial conditions, in the absence and in the presence of
noise: Clearly, entanglement is robust when shielded by the
resonance island. While chaotic dynamics produce slightly
stronger entanglement, this is significantly more fragile
under decoherence.

Given the above, some remarks on the applied noise are
in order, since any statement on the robustness of some
kind of coherence must depend on the nature of the noise.
Here, we used Gaussian noise as described in [28,29],
which can be implemented experimentally by an enlarge-
ment of the quantum register by a set of suitably initialized
ancilla qubits [30]. It can be written as a map

 S ���� �
X
qp

c��p; q�Tqp�T
y
qp; (3)

which is applied once after each application ofU1. c��p; q�
is the discrete Fourier transform of ec���; �� � exp�� 1

2 	

��N� �
2�sin2���=N
 � sin2���=N
�
 and is very close to a

periodic Gaussian of width �=�2��, centered around
�q; p� � �0; 0�. The Tqp are unitary translation operators
on the torus [31].

The action of S���� is easily understood in phase space:
with high probability, the state is left untouched, while with
weight c��p; q�, locally in phase space, every possible
translation is generated. This noise is similar to a high
temperature bath of oscillators producing both diffusion
and decoherence, and steers the quantum dynamics into the
semiclassical limit [32]. In Wigner phase space represen-
tation, diffusion induces broadening and blurring of the
contour of the state, while decoherence wipes out the
interference fringes, and eventually transforms the state
into a mixed (classical) state. Given the k-dependence of
@eff , the strength � of the noise was scaled such as to keep
�=@eff constant, in the above plots. The observed robust-
ness of entanglement stems from the local action of S����,
which respects the classical phase space structure and
leaves the initial state within the elliptic island effectively
as a fixed point of the evolution, in the limit of large k
(small @eff). The dramatically different dynamics of Ck�8

within and outside the island is a (multipartite) manifesta-
tion of enhanced decoherence in classically chaotic as
opposed to regular systems [33], for this specific type of
noise, and suggests the emergence of a subspace which is
shielded against disentanglement, in the semiclassical
limit.

In contrast, we may choose nonlocal noise sources such
as defined by the multipartite phase damping channel
(PDC),

 S PDC
� ��� � �1� ���� �

X
i

�iijiihij; (4)

or the generalized depolarizing channel (DPC)

 S PDC
� ��� � �1� ���� �I: (5)

For a computational basis identified with position states,
both these maps can be expressed in terms of translations
on the torus [34], though now with equal (rather than
Gaussian, see (3)) weight. Thus, they completely obliterate
the classical phase space structure, and couple different
eigenstates of the quantized Harper map, irrespectively of

 

0

 0.25

 0.5

 0.75

1

 1.25

 1.5

 1.75

2

0  0.2  0.4  0.6  0.8 1

C
k

p

FIG. 2 (color online). Eight-partite concurrence Ck�8 as a
function of initial momentum (p � 0:0; 0:05; . . . ; 0:95; 1:0), after
16 iterations of the Harper map, with � � 0:4964. Open symbols
correspond to unitary evolution, while filled symbols refer to
unitary evolution amended by diffusive noise, Eq. (3). Squares
represent the initial position q � 0:5, and triangles q � 0:25.
Peaks and dips of Ck�8�t� are located exactly at the center of the
nonlinear resonance island in classical phase space.
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their localization properties in regular or chaotic phase
space domains. Accordingly, given the same initial con-
ditions as in Figs. 1 and 2, concurrence decreases monoto-
nously with time, independently of the initial condition,
except for the typical short time transient (see also Fig. 1)
observed for the chaotic initial condition—see Fig. 3.

To conclude, we have shown that minimum uncertainty
states induce multipartite entanglement in the associated
computational basis, robust against the action of diffusive
Gaussian noise, when launched within a nonlinear reso-
nance island. They can be produced efficiently as ground
states of the Harper Hamiltonian [19], subsequently trans-
lated using torus translation operators. The latter generate
modular additions with controlled phase shifts on the
register qubits and can be implemented, e.g., in ion trap
experiments [35,36]. Furthermore, given the robust entan-
glement evolution for initial conditions within a regular
island, also those eigenstates of the Harper Hamiltonian
which are anchored to the classical regular island exhibit
the same robustness properties. Thus, robust multipartite
entangled states can be defined through the resonance
condition which defines the regular island, a ubiquitous
feature of Hamiltonian systems with mixed classical phase
space structure.
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FIG. 3 (color online). Evolution of multipartite concurrence
Ck�8 in the presence of phase damping (triangles, Eq. (4)) and
depolarizing noise (squares, Eq. (5)), with � � 0:04 in Eqs. (4)
and (5). Filled and open symbols refer to initial conditions in the
chaotic domain and within the resonance island, respectively,
precisely as in Fig. 1.
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