Ong *et al.* **Reply:** Our experiments $\lceil 1-3 \rceil$ $\lceil 1-3 \rceil$ $\lceil 1-3 \rceil$ persuade us that the Meissner transition at T_c in hole-doped cuprates is driven by the loss of long-range phase coherence caused by singular phase fluctuations, a scenario at odds with the mean-field (MF), Gaussian Ginzburg Landau (GGL) approach advocated by Cabo, Mosqueira, and Vidal [\[4](#page-0-2)].

A characteristic MF feature is the linear decrease to zero of the upper critical field $H_{c2}(T) \sim (1 - t)$ near T_c ($t =$ T/T_c , with *T* the temperature). In sharp contrast, magnetization (*M*) and Nernst data in intense fields *H* show that, in hole-doped cuprates, $H_{c2}(T)$ remains very large up to T_c [\[1–](#page-0-0)[3](#page-0-1)]. Figure [1\(a\)](#page-0-3) shows curves of *M* in optimal (OP) $Bi₂Sr₂CaCu₂O_{8+\delta}$ (Bi 2212) measured in fields *H* to 45 T.

The estimated H_{c2} values remain significantly higher than 45 T as *T* is raised above 86 K. The curves directly contradict previous, inferred $H_{c2} \sim (1 - t)$ behavior, mostly from data taken below 5 T (see Fig. 3 of Ref. [\[3\]](#page-0-1) for curves in OP $YBa₂Cu₃O₇$).

A second incompatibility with the GGL approach is the striking nonlinearity of the *M*-*H* curves in Bi 2212 [Fig. $1(b)$] [[2](#page-0-4)]. Between 105 K and T_c , the magnetization displays the fractional power-law behavior $M \sim -H^{1/\delta}$ in weak fields [[2\]](#page-0-4). The exponent $\delta(T)$ grows from 1 to \sim 15 as *T* falls from 105 K to T_c . This unusual field dependence is

FIG. 1 (color online). Magnetization curves in OP Bi 2212. Panel (a) shows *M* measured up to 45 T at *T* from 35 K to above 90 K (T_c = 86 K). Below 70 K, |M| decreases as logH over a very broad field interval [[1](#page-0-0)], but above 70 K, *M* vs *H* shows anomalous features such as the separatrix T_s (\sim 85 K) at which *M* is independent of *H* below \sim 5 T. In large *H*, |*M*| again decreases as $logH$. $H_{c2}(T)$, defined as where $M \rightarrow 0$, remains high at values 100–150 T even when T_c is exceeded, in sharp contrast to GGL (MF) predictions (previous experiments on *M* stop at 5 T). Panel (b) displays the strong curvature of *M* above T_c in weak H (<[2](#page-0-4) T) [2]. The curves display persistent negative curvature consistent with $M \sim -H^{1/\delta}$ with a *T*-dependent $\delta(T)$ up to \sim 105 K.

in conflict with the Gaussian treatment of fluctuations. Other incompatibilities with GGL theory include the anomalous increase in |*M*| above H_{c1} for $T < T_c$ (see Ref. [\[2](#page-0-4)] for full discussion).

In light of the fundamental incompatibilities, fitting the *T* dependence of $M(T, H)$ at a single value of *H* is not an enlightening exercise. As shown in Ref. [[2](#page-0-4)], $|M(T, H)|$ with $H = 10$ Oe actually diverges exponentially as *T* decreases towards T_c from above, instead of as a power law in $(t - 1)$. Approaches based on phase-disordering schemes, e.g., the Kosterlitz-Thouless transition [[5](#page-0-5)] or the anisotropic 3D *XY* model [[6](#page-0-6)] seem more productive.

Further, the GGL fits lead to parameters that are highly unreliable. In optimal Bi 2212, the experiment gives $H_{c2}(0) = 150-200$ T, whereas the fit in Ref. [\[4\]](#page-0-2) predicts 330 T. In underdoped LSCO ($x = 0.1$), we find $H_{c2}(0) \sim$ 80 T, whereas a similar analysis [\[7\]](#page-0-7) predicts 26–28 T. Such a low H_{c2} is ruled out by experiment [\[3](#page-0-1),[8](#page-0-8)].

Other evidence exists for the survival of the pair condensate amplitude high above T_c in the pseudogap state. These include the Nernst effect [[3](#page-0-1)], kinetic inductance [[9\]](#page-0-9), and measurements of the gap [\[10](#page-0-10)[,11\]](#page-0-11).

These anomalies are completely outside the purview of Gaussian fluctuations that underlie the GGL approach, regardless of the cutoff scheme adopted.

N. P. Ong,¹ Yayu Wang,¹ Lu Li,¹ and M. J. Naughton² ¹Department of Physics Princeton University New Jersey 08544, USA 2 Department of Physics Boston College Chestnut Hill, Massachusetts 02467, USA

Received 6 July 2006; published 12 March 2007 DOI: [10.1103/PhysRevLett.98.119702](http://dx.doi.org/10.1103/PhysRevLett.98.119702) PACS numbers: 74.25.Dw, 74.25.Ha, 74.72.Hs

- [1] Yayu Wang *et al.*, Phys. Rev. Lett. **95**, 247002 (2005).
- [2] L. Li *et al.*, Europhys. Lett. **72**, 451 (2005).
- [3] Yayu Wang, Lu Li, and N. P. Ong, Phys. Rev. B **73**, 024510 (2006).
- [4] L. Cabo, J. Mosqueira, and F. Vidal, preceding Comment, Phys. Rev. Lett. **98**, 119701 (2007).
- [5] Vadim Oganesyan, David A. Huse, and S. L. Sondhi, Phys. Rev. B **73**, 094503 (2006).
- [6] A. K. Nguyen and Sudbø, Phys. Rev. B **60**, 15 307 (1999).
- [7] C. Carballeira *et al.*, Physica (Amsterdam) **384C**, 185 (2003).
- [8] Lu Li, J. G. Checkelsky, Seiji Komiya, Yoichi Ando, and N. P. Ong, Nature Phys. (to be published).
- [9] J. Corson *et al.*, Nature (London) **398**, 221 (1999).
- [10] Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and Ø. Fischer, Phys. Rev. Lett. **80**, 149 (1998).
- [11] K. K. Gomes, A. N. Pasupathy, and A. Yazdani *et al.* (unpublished).