
Hydrodynamics and Rheology of Active Liquid Crystals: A Numerical Investigation

D. Marenduzzo,1 E. Orlandini,2 and J. M. Yeomans3

1SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
2Dipartimento di Fisica and Sezione INFN, Universitá di Padova, Via Marzolo 8, 35131 Padova, Italy
3The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom

(Received 9 August 2006; published 16 March 2007)

We report numerical studies of the hydrodynamics and rheology of an active liquid crystal. We confirm
the existence of a transition between a passive and an active phase, with spontaneous flow in steady state.
We explore how the velocity profile changes with activity, and we point out the difference in behavior for
flow-aligning and tumbling materials. We find that an active material can thicken or thin under a flow, or
even exhibit both behaviors as the forcing changes.
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Active viscoelastic gels and active liquid crystals are
new kinds of soft matter. The gels are active in that they
continuously burn energy, e.g., in the form of adenosine-
triphosphate, and this pushes them out of thermodynamic
equilibrium even when there is no external driving. As a
consequence they exhibit exciting and nontrivial physical
and rheological properties. Perhaps the most striking is that
spontaneous flow can exist in nondriven active materials
[1–5], in sharp contrast to their passive counterparts.

Active materials are typically encountered in biological
contexts: examples are bacterial swimmers [1,2], mitotic
cell extracts [6], and cytoskeletal gels with molecular
motors, such as actomyosin solutions or microtubular net-
works with dyneins [7,8]. The activity leads to striking
phenomena such as bacterial swarming and cytoplasmic
streaming [1]. Furthermore, many biological gels, such as
actin networks, thicken when sheared [9]. This is the
opposite of the typical behavior of polymeric fluids, which
flow more easily as pressure increases.

As it is often impractical to solve the equations of
motion governing the microscopic dynamics of active
materials, a series of coarse grained continuum models,
which describe these liquid crystalline fluids in terms of a
density, a velocity, and an order parameter field, have
recently been proposed in the literature. References [4]
consider a generalization of the Ericksen-Leslie model
for liquid crystal hydrodynamics, which accounts for the
activity by including extra terms that are disallowed by
symmetry in the passive case. They used linear stability
analysis to predict the onset of spontaneous flow and, in
two dimensions, the appearance of flowing structures remi-
niscent of the spirals and asters seen in experiments [7].
Simha and Ramaswamy [1] have constructed and per-
formed a stability analysis on the equations of motion for
nematic and polar self-propelled particles. Liverpool and
Marchetti [5] have explored a more microscopic derivation
of the continuum equations for active filament solutions.

These results suggest that there is much to be learned by
probing the behavior of active materials deep in the active
phase or under a driving force. The continuum equations

are strongly nonlinear, and thus a robust numerical method
is needed which aims to study the hydrodynamics and
rheology of active fluids, not relying on any approxima-
tions other than the ones used to derive the continuum
model. This is the program we aim to follow here. We
use a set of equations of motion for an active liquid crystal,
described by a tensorial order parameter. These are similar
to those proposed in [1] and reduce to the Beris-Edwards
equations of liquid crystal hydrodynamics in the passive
limit. The tensorial approach allows us to describe cases in
which the magnitude of local order is not constant, e.g.,
close to a defect core. We can also describe biaxial order-
ing, which may be relevant for actin networks close to the
cell membrane where the distribution of tip directions is
bimodal [6]. We solve the equations using a lattice
Boltzmann algorithm.

Hence we can explore numerically the phase diagram of
active liquid crystals confirming the presence of a transi-
tion from a passive to an active phase, characterized by
spontaneous flow. We then move further into the active
phase, comparing the behavior of flow-aligning and flow-
tumbling materials. For flow-aligning liquid crystals, there
is a highly nontrivial behavior with bands of opposing
velocity forming across the cell. For the flow-tumbling
case the behavior is in sharp contrast to the passive case:
here we see a spatially quasiconstant director profile with a
zero velocity away from the boundaries.

We also study the rheology of an active liquid crystal
slab. Aligning active materials display strong shear thick-
ening. The response of tumbling materials to an imposed
flow is strikingly nontrivial: the viscosity varies nonmono-
tonically with increasing shear, with a pronounced maxi-
mum. We interpret this behavior as a result of the interplay
between flow induced by the activity, flow induced by the
forcing and the propensity of the active liquid crystal to
minimize elastic distortions.

We introduce a Landau–de Gennes free energy, F , to
describe the equilibrium physics of the active liquid crystal
in its passive phase. This is a function of a tensor order
parameter, Q��, whose largest eigenvalue (2q=3) and its
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associated eigenvector, respectively, give the magnitude
and direction of the local orientational order, e.g., of actin
fibers in an actomyosin solution. F is the integral of a sum
of two free energy densities. The first is a bulk contribu-
tion,
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A0 is a constant and � controls the magnitude of the
ordering. (Greek indices denote Cartesian components
and summation over repeated indices is implied.) A second
term K=2�@�Q���

2 describes the free energy cost of dis-
tortions in Q [10], where K is an elastic constant. We
neglect the spontaneous splay coefficient, equivalent to
having infinitely strong anchoring at the boundaries [4].

The equation of motion for Q is [11]

 �@t � ~u � r�Q� S�W;Q� � �H� �Q: (2)

The first term of Eq. (2) is the material derivative describ-
ing a quantity advected by a fluid with velocity ~u. This is
generalized for rodlike molecules by
 

S�W;Q� � ��D����Q� I=3� � �Q� I=3���D���

� 2��Q� I=3�Tr�QW�; (3)

where Tr stands for trace, while D and � are the symmetric
and the antisymmetric part, respectively, of the velocity
gradient tensor W�� � @�u� [11,12]. � depends on the
molecular details of the liquid crystal. S�W;Q� appears as
the order parameter distribution can be both rotated and
stretched by flow gradients [11,12]. Most relevant in our
context increasing � moves the liquid crystal from the
tumbling to the aligning regime. For � � 3, a (passive)
liquid crystal is flow tumbling for � � 0:6 and flow align-
ing otherwise. In the first term on the right-hand side of
Eq. (2) the molecular field H is H � � �F

�Q � �I=3�Tr �F�Q
and � is a collective rotational diffusion constant. The final
term contains the active parameter �. Its form was sug-
gested on the basis of symmetry in [1] and confirmed via a
microscopic derivation in [5]. For dilute or semidilute
bacterial suspensions, � should be negative, and ��1

should give the time scale of relaxation of activity-induced
ordering. As suggested in [4], instead, � > 0 when describ-
ing systems which display self-alignment effects, like con-
centrated actomyosin solutions. However, our simulations
show that for � in the range covered in Fig. 1 (for which the
order parameter q is between 0 and 1) the qualitative
hydrodynamic and rheological behavior in the active phase
is unchanged. These are more crucially controlled by �
(see below).

The fluid velocity, ~u, obeys the continuity equation and
the Navier-Stokes equation,
 

��@t � u�@��u� � @������ � 	@��@�u� � @�u�

� �1� 3@�P0�@�u�����: (4)

� is the fluid density, 	 is an isotropic viscosity and the
stress tensor ��� � �passive

�� ��active
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P0 is a constant. The active stress is given to linear order by
�active
�� � ��Q�� [1]. This term determines the hydrody-

namics in the active phase. � > 0 and � < 0 refer, respec-
tively, to extensile and contractile active gels [1,3–5].
Although systematic investigations of the values of � are
still lacking, experiments [8] and microscopic approaches
[5], suggest that actomyosin gels are contractile.

These equations of motion reduce to the Beris-Edwards
description of liquid crystal hydrodynamics for � � � �
0. In the limit of a uniaxial order parameter of constant
magnitude they map to the equations derived in [3,4] to
describe an active gel in terms of the polarization field.

We solve Eqs. (2) and (4) by using a lattice Boltzmann
approach. This is a generalization of the algorithm de-
scribed in Refs. [12], which was devised to study the
hydrodynamics and rheology of a passive liquid crystal.
The active contributions needed here simply modify the
forcing terms in the lattice Boltzmann algorithm.

We first investigate the flow fields set up by the activity,
comparing flow-aligning and flow-tumbling materials.
Consider a slab of active liquid crystal sandwiched be-
tween two fixed plates, parallel to the xz plane, lying a
distance L apart along the y axis and with homogeneous
anchoring (along x̂) at the boundaries y � 0, L.

In what follows we will mainly use simulation units.
These can be related to physical units by noting that one
space and time simulation unit correspond to �x �
0:025 �m and �t � 0:067 �s, respectively, if we choose
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FIG. 1 (color online). Boundary between passive and active
phases in the (�; �) plane for an active liquid crystal, for two
different system sizes. Parameters are ��0:7, � � 3, 	 � 0:47.
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a rotational viscosity �1 [10] and an elastic constant K of
1 Poise and 25 pN, respectively.

Figure 1 shows the behavior in the (�, �) plane for two
different system sizes L � 100 and L � 200. We confirm
the presence of a transition between a passive and an active
phase, predicted analytically in Refs. [3,4,13]. In the pas-
sive phase, which occurs for small L or for small � , there is
no flow and the polarization field is homogeneous. In the
active state, however, there is a spontaneous flow along x
which is initially approximately sinusoidal with a half
wavelength between the channel walls.

Staying at � � 0:002 and L � 400 we increase � so as
to move the system further into the active phase. Results,
for the velocity and the corresponding angle the liquid
crystal director makes with the x axis, 
 are shown in
Figs. 2(a) and 2(b), respectively, for the flow-aligning
case. The velocity is initiated with a small random compo-
nent. The first striking feature is that the number of wave-
lengths in the velocity profile increases with � . For
L � 400 and a zero velocity starting configuration states
with 1=2, 1, and 3 wavelengths across the channel are
formed as � is increased, a behavior reminiscent of shear
banding in nonactive materials [14]. The magnitude of the
velocity is �L2 and states with a larger number of wave-
lengths appear at a higher � for smaller L. There are strong
hysteresis effects with the final state depending on the
initial condition. For instance, starting with a single wave-
length state and increasing � new, weaker bands are
formed, but then disappear.

As � increases the sinusoidal variation of the velocity is
replaced by areas of constant shear separated by narrow
regions where the shear gradient reverses. This is because
backflow acts to minimize elastic distortions and hence
favors constant shear corresponding to the plateaus in the
director angle, shown in Fig. 2(b). Here the inclination
angle of the director is close to the usual Leslie value [10].

In a nonactive liquid crystal, as � is decreased, there is
no real solution for the shear-induced angle and the direc-
tor tumbles in the flow. However flow-tumbling materials
yield a markedly different phenomenology in the active
phase. The velocity is zero and the director field takes a
constant value independent of position except near the
channel walls as shown in Figs. 2(c) and 2(d). (An inves-
tigation of the Leslie-Ericksen-Parodi equations of motion
shows that there is indeed a new solution which is only
present for nonzero activity.)

We now analyze the rheological response of an active
liquid crystal to a Poiseuille flow driven by a pressure
difference �p along x. Figure 3 shows the velocity profiles
for two different values of �p, while Fig. 4 maps out the
viscosity (scaled to the Newtonian value) as a function of
the dimensionless ratio �pL2=�	v0�, where v0 	 �x=�t.
Results are shown for � � 0:005 and 0.05, which corre-
spond to velocity modulations of 1=2 and 3=2 wavelengths,
respectively. In the former case, for very small forcing, the
maximum velocity attained by the aligning active liquid
crystal is about 1 order of magnitude larger than that of its
passive counterpart. This is because the spontaneous flow
adds to the externally imposed flow. As the forcing is
increased, the activity-induced ordering, which leads to
spontaneous flow, is gradually replaced by a �p-induced
ordering, which does not, and as a result the fluid shear
thickens to its passive viscosity (Fig. 4).
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FIG. 2 (color online). Velocity (top) and director angle to the x
axis (bottom) profiles for (a),(b) an active aligning liquid crystal
(� � 0:7, � � 3, � � 0:002, L � 400) and (c),(d) an active
tumbling (� � 0:6, � � 3, � � 0:002, L � 400) liquid crystal
for different values of � . In (a),(b) solid, long-dashed, dotted, and
dot-dashed line correspond to � � 0:0001, 0.0012, 0.005, and
0.02, respectively. In (c),(d) solid, long-dashed, and dot-dashed
lines correspond to � � �0:0003, �0:0006, and �0:0008, re-
spectively. In (b) the solid line has been multiplied by 10 to fit
the scale. (All numbers are in simulation units.)
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FIG. 3 (color online). Velocity profiles for active aligning
(long-dashed line), active tumbling (solid line), and passive
(dot-dashed line) liquid crystals under two different forcings.
A and B are indicated in Fig. 4. Parameters are: � � 0:001, � �
3, L � 200, while � and � were 0.6 and �0:005 for flow
tumbling, 0.7 and 0.005 for flow aligning, and 0.7 and 0 for
passive liquid crystals, respectively. In A �pL2=�	v0�was 0.035
and in B it was 0.85 (see Fig. 4). The values of ux have been
rescaled by the maximum ux attained in the passive case.
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Tumbling active materials display an even richer phe-
nomenology. We consider � � �0:005 corresponding to
the velocity profile in Fig. 3. For slow forcing flow near the
left-hand boundary is enhanced and that near the right-
hand boundary opposed by the pressure gradient. Hence an
asymmetry is introduced in the velocity profile. As forcing
is increased the symmetry of the primary flow is restored.
There is an enormous shear-thickening and the viscosity
reaches a value �100-fold larger than that experienced by
a passive liquid crystal under the same conditions. This is a
phenomenon akin to permeation in cholesteric passive
liquid crystals [12]: the liquid crystal is trying to maintain
a director field aligned at a constant angle. When the
forcing is increased further, the tumbling active material
is unable to maintain this state and it undergoes abrupt
shear thinning. The order introduced by the activity is
destroyed, the director lines up along the applied flow,
and the behavior of a passive gel is recovered as expected.
We have run another set of simulations with contractile
flow-aligning materials (which are passive when �p � 0),
with the same value of � . These also showed a nonmono-
tonic response, although with a smaller maximum apparent
viscosity. This striking behavior is a result of the propen-
sity of the contractile gel to minimize elastic distortions
when a flow is induced by the forcing. Our calculation
suggests that contractility may be another reason under-
lying the thickening of biological gels under shear ob-
served in [9]. Repeating the experiments in [9] with
extensile gels would allow this effect to be singled out.

In conclusion, we have investigated numerically the
hydrodynamics and rheology of an active liquid crystal
moving deep into the active phase. Tumbling and aligning

active materials have very different behavior. In aligning
liquid crystals velocity bands are formed. Strong hysteresis
suggests a very complicated phase space with many com-
peting metastable states. Tumbling active liquid crystals
select, in contrast to their passive counterparts, a state with
a constant director field in the bulk of the sample which
only flows close to the boundaries.

Activity leads to strong shear thickening in aligning
liquid crystals, while the apparent viscosity of active tum-
bling materials shows a striking nonmonotonic behavior
with a narrow high peak in which flow is considerably
slower than in an equivalent passive gel. An analogous
phenomenon occurs for contractile aligning gels.

Our predictions could be ideally tested with rheologi-
cal experiments on actomyosin solutions or on micro-
tubular networks with dynein, in which cross-linkings
are active and dynamic and for which there is evidence
that this continuum model captures the physics observed
in the experiments [1,3]. Cell extracts are likely to be less
ideal candidates for an experimental validation of our
results, as rigid branching points may render their pas-
sive equivalent closer to an elastomer than to a liquid
crystal.

We thank M. E. Cates for useful discussions.
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FIG. 4 (color online). Plot of the viscosity, scaled to the
Newtonian value, versus dimensionless forcing for (a) aligning
and (b) tumbling liquid crystals. Parameters for the dashed lines
(solid circles) are as in Fig. 3 except for �p which is changed
systematically. The dot-dashed line (solid squares) is for a flow-
aligning liquid crystals deeper in the active phase with � � 0:05
(other parameters remain the same). Any deviation from 1
(dotted line) indicates a viscoelastic behavior.
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