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We propose a two-component reaction-transport model for the migration-proliferation dichotomy in the
spreading of tumor cells. By using a continuous time random walk (CTRW), we formulate a system of the
balance equations for the cancer cells of two phenotypes with random switching between cell proliferation
and migration. The transport process is formulated in terms of the CTRW with an arbitrary waiting-time
distribution law. Proliferation is modeled by a standard logistic growth. We apply hyperbolic scaling and
Hamilton-Jacobi formalism to determine the overall rate of tumor cell invasion. In particular, we take into
account both normal diffusion and anomalous transport (subdiffusion) in order to show that the standard
diffusion approximation for migration leads to overestimation of the overall cancer spreading rate.
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Extensive investigations have been devoted to the mod-
eling of cancerous growth [1-3]. Although a great deal of
progress has been made in this theory, especially for solid
tumors, for which growth is basically due to cell prolifera-
tion, our understanding of malignant gliomas, the diffusive
and highly invasive brain tumors, is much less complete
[2]. The main reason for this is that unlike solid tumors,
gliomas not only are able to proliferate but also to invade
the surrounding brain parenchyma actively. The surgical
resection of diffusive tumors is ineffective since the cancer
cells have already invaded the surrounding brain tissue.
This leads to recurrence of tumor, and the prognosis for
patients suffering from malignant gliomas is very poor.
Thus, proliferation and especially migration of gliomas
provide a significant challenge for modeling, and this is
why the invasiveness of tumors has been studied exten-
sively in recent years [2,4,5].

Invasion, itself, is a very complex process of receptor-
mediated transport [6], which involves several steps of cell
migration and proliferation (see a review [4]). Experi-
mental evidence shows the lower proliferation rate of
migratory cells in comparison with the tumor core, which
indicates an inverse correlation between mobility and pro-
liferation of cell population. The existence of this impor-
tant phenomenon was supported by numerous experi-
mental data obtained in vitro and clinical data obtained
in vivo [4]. It was formulated by Giese et al. [7] as a
migration-proliferation dichotomy. It turns out that prolif-
eration and migration of tumor cells are mutually exclusive
phenotypes: the spreading suppresses cell proliferation and
visa versa. The molecular mechanism for this dichotomy
has been suggested in [8]; and then an active implementa-
tion for the numerical modeling of the brain tumor and its
fractional topology has been established [9]. It turns out
that this behavior of cells is an inherent process of a so-
called continuous time random walk (CTRW). This trans-
port concept, based on jump and waiting-time distribu-
tions, has been extensively and successfully employed
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for numerous applications [10,11]. Migration-proliferation
dichotomy was formulated in the framework of the CTRW
in [12]. The primary focus was on the influence of cell
fission on transport properties of cells. An essential de-
crease in cell motility during fission time, or their self
entrapping, is determined by the interaction of cells with
their environment. In vitro experimental observations of
cell transport confirm the essential decrease in cell motility
during cell proliferation [13].

Usually the random mobility of tumor cells is described
by Fick’s law. However, it has been shown that the diffu-
sion approximation for the transport process together with
a logistic growth yields an overestimation of the overall
propagation rate [14,15]. Since the tumor cells’ migration
is the most critical feature of brain cancer, causing treat-
ment failure, the transport has to be properly understood.
One of the main purposes of this Letter is to take into
account anomalous transport (subdiffusion) leading to
slow mobility of cancer cells in the invasive zone.

Here, we propose an alternative approach for the
migration-proliferation dichotomy. We employ a two-
component CTRW, assuming that the glioma cells are of
two phenotypes. In state 1 (migratory phenotype), the cells
randomly move but there is no cell fission. In state 2
(proliferating phenotype), the cancer cells do not migrate
and only proliferation takes place. The exact mechanism of
switching between the two phenotypes is not known. An
interesting deterministic mechanism for this phenotype
switch has been suggested recently in [16]. However, the
mathematical modeling involves many parameters, some
of which are difficult to estimate. We propose the stochas-
tic approach for the proliferation-migration switching in-
volving only two parameters. We assume that the cell of
type 1 remains in a state 1 during a waiting time 7; and
then switches to a cell of type 2. After a waiting time 75,
spent in a state 2, it switches back to a cell of type 1. Both
waiting times 7; and 7, are mutually independent random
variables. In this Letter, we consider them exponentially
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distributed with parameters 8, and B,:, namely, f(7;) =
B;exp(—B;7;). Here the parameters §3; are the switching
rates, namely, 3, is the switching rate from state 1 to 2,
while B, determines the transition rate 2 — 1. The last
parameter can control the lower migratory cell
proliferation.

Let us introduce the density for the cells of migratory
phenotype (cells of type 1), n;(z, x), and for the cells of
proliferating phenotype (cells of type 2), n,(z, x). The
balance equations can be written as follows:

ny(t, x) = n, (0, x)¥(t)e A + ﬁt fnl(t —5,x—2)p(2)

X ¢(s)e Prsdzds + B, ft ny(t — 5, x)W(s)
0

X e Bisds, (D)

ny(t, x) = ny(0, x)e B! + Uft ny(t — s, x)
0
X [1 = ny(t — 5, x)/Kle P>*ds

+ By fnl(t — 5, x)e P3ds, (2
0

where p(z) is the probability density for migration jump
length, while #(s) is the probability density of waiting
times between jumps, and W(r) = 1 — [{ ¢(s)ds is the
probability that a cell of type 1 makes no jump until time
1. The exponential factor e A" = [ f(r,)dr; is the proba-
bility that cells of phenotype i do not switch until time ¢.
Equation (1) describes the balance of cells of type 1 at time
t at position x. The first term on the right hand side of the
equation represents those cells of type 1 that stay up to time
t at position x such that no jump occurs, and no switch 1 —
2 takes place. The independence of the random jumps and
switching gives us the probability W(¢)e #1* while the first
factor n,(0, x) is the initial density of cells of type 1. The
second term describes the number of cells of type 1 arriv-
ing at x up to time ¢ due to the following random mecha-
nism of migration: the cell of type 1 at time ¢ — s at
position x — z waits a random time s before jumping at a
distance z and remains a cell of type 1. This process is
determined by the transition probability ¢(s)p(z). The
limits of the space integral are determined by the bounda-
ries. The last term in Eq. (1) represents the number of cells
of type 2 that switches to the cell of type 1 up to time ¢ and
remaining the cells of type 1 (due to the factor e A1), It
also takes into account the fact that if transition 2 — 1
happens at time ¢ — s, then no jump takes place during the
remaining time s [due to the factor W(s)].

Regarding Eq. (2), the first term on the right hand side
has the same physical meaning as one in Eq. (1). The
second term is the logistic growth [17] for cells of type
2, which occurs providing that no switch takes place up to
time ¢. Here, U is the cell proliferation rate, and K is the
carrying capacity of the environment. The last term of

Eq. (2) represents the number of cells of type 1 switching
to the state 2 over the time interval (0, f). Note that one-
component balance equation involving transport and pro-
duction term has been analyzed in [15].

The balance Eqs. (1) and (2) can be written as the system
of integro-differential equations. By using the Laplace
transform 7i,(H) = [§ e "'n;(1)dt and presenting the left
hand side of the equations in the form H7i;(H) — 7;(0)
which is the Laplace transform of the time derivative,
one obtains

% B j: a(r =) f[nl(s,x — 2) — ny(s, x)]p(z)dzds
- Blnl + an2y (3)
8n2 _

¥ Uny(1 — ny/K) + Biny — Bony, 4)

where the “memory” kernel «(¢) is defined in terms of its
Laplace transform

(H + B)y(H + By)

W) = gl

(&)

with §(H) = [& w(t)e™H'dr. The equivalence of one-
component balance equation to a master equation involv-
ing memory kernel has been shown in [10]. Note that it is
impossible to find an explicit expression for memory ker-
nel a(r) for arbitrary choices of waiting-time pdf (z). In
what follows, we will be concerned with the overall rate of
the spreading of gliomas. It turns out that this rate depends
on the Laplace transform @(H) rather than a(z). That is
why the formula (5) plays a crucial role in this Letter.

It follows from observations [4] that cell jumps are
controlled by receptor-mediated adhesion of tumor cells
to matrix proteins, and jump lengths are very small.
Therefore, p(z) in Eq. (3) is a rapidly decaying function
for large z, and the long-range effects are weak. In this
case, one can use the Taylor series in Eq. (3) expanding
n,(s, x — z) in z and truncate the series at the 2nd moment.
It should be stressed that this truncation is a well-defined
procedure since the higher moments for such a kernel
become progressively smaller [18]. Assuming the spatial
symmetry of p(z) (there is no convection: [zp(z)dz = 0),
we obtain from Eq. (3) [19]

o’ [t a*n

G =T [t =9 ds = By + B (©)
where 02 = [ z%p(z)dz. Generalization on 3D is straight-
forward; namely, the second derivative is replaced by the

Laplace operator A.
Now we are in a position to find the overall rate u at
which a wave front of the cancer cells spreads. In the
classical setting based on Fisher equation [17], the propa-
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gation rate u is proportional to /DU, where D is the
diffusion coefficient and U is the proliferation rate. In
this Letter, we have a couple of Egs. (4) and (6), and we
are interested in a traveling wave solution to this system
and its propagation rate u. If we specify frontlike initial
conditions for densities n; and n,, the fronts for both
densities quickly achieve the stationary forms that propa-
gate with a constant rate u. The main purpose here is to find
the dependence of this propagation rate on the statistical
characteristics of the random switching process, 8, and
B,, and random walk in space, o and (). The objective
here is to find the rate u without resolving the shape of the
traveling waves [14,20]. For this purpose, we use a hyper-
bolic scaling x — x/e, t — t/e and the rescaled densities
né(t,x) = n;(t/e, x/e). We apply the exponential trans-
formation

né(t, x) = Aex< i=12 (D

G(t, x)

£ >
in Egs. (4) and (6), where positive constant A; and A,
represent the stable equilibrium points of the densities nj
and n§. Our purpose is to find an equation for G(z, x) which
gives us the spreading front position x(¢) in the limit of the
long time and large distance, from the equation
G[t, x(r)] = 0 [14]. To ensure the minimal spreading rate,
we use the frontlike initial conditions: 7,(0, x) = A; for
x < 0and n,(0, x) = 0 for x = 0 [20]. Substituting (7) into
the equations for n{, n3 that are derived from Eqgs. (4) and
(6), one obtains two equations for A; and A, in the limit
& — (0. This system has a nontrivial solution when the
corresponding determinant is equal to zero. This yields a
generalized Hamilton-Jacobi equation, involving the first
two derivatives dG/dt and dG/dx:

G 0 .
{1 - [1 + —<—> }[ e(aG/"’)st,lf(s)eﬁ'Sds}
2 \ ox 0
X [1 - Ujoo e(aG/a’)se_stds:|
0

_ﬁlﬁzf e(aG/dt)s\I,(s)e 'Blsdsfoo

0

e(ac/at)se—ﬁzsds

=0 (8

Note that inferring Eq. (8), we do not make any assump-
tions regarding waiting-time pdf ¢(¢). If we introduce the
Hamiltonian function H = —9G/dt, the generalized mo-
mentum p = dG/dx, and the Laplace transform (H) =
[& w(t)e H'dt, then the Hamilton-Jacobi Eq. (8) takes the
form

0.2p2 _ 1

2 J(H+B)

[1 _ BBl —&(H+/31)]}_1
(H+B)H+B~0)]
)

The latter equation is important since it allows us to find
the overall spreading rate u = ming{H/p(H)} by using

[14]

Hoap )

“pH)  H  H 10

In the symmetrical 3D case, Eq. (9) corresponds to the
Hamiltonian motion in the radial direction. Let us illustrate
the use of the above theory through two typical distribu-
tions for the waiting-time pdf i(z).

First, we consider a probability distribution function for
the exponentially distributed waiting times: (f) =

Le=!/7. We find ¢(H) = (1 + Hr)"! and @(H) = 77!,
and therefore a(tr) = 7~ '8(¢). This corresponds to the
classical Fick’s law for transport with the diffusion coeffi-
cient D = 0'2/27. Thus, we have a classical system of
reaction-diffusion equations such that the equation for
the migratory cells is

on 9%n
a_tl :Dﬁ_ﬁlnl + Ban,. (11)

The momentum p(H) can be found from (9)

2:(H+B1)_ B1B
P D DH+ B, - U)

12)

If we assume that 8; = 8,, we can find from (10) and (12)
p = (U/D)'"2, and H = U. Therefore, the spreading rate
is uy = (UD)'/? which is half of the classical Fisher-KPP
propagation speed. This is a very interesting result showing
that the propagation rate is independent of the random
migration-proliferation switching when cell transport is
the Brownian motion and 8; = B,. When 8, # 3,, one
can find the ratio of the propagation rate u and uy =
(UD)'/? as

uy HX(H + B, — U)
<u0> U[(H + B, — U)H + By) — B1B2]

The situation changes for the power law distribution
(anomalous transport): ¢(¢) ~ (/'Y with 0 <y <1.
This is the case when the mean waiting-time is divergent:
(f) = oo. This assumption alone leads to the temporal frac-
tional differential operator and corresponding anomalous
diffusion equation [11]. The mean squared displacement
for mobile cells is

(13)

4D,

0 = 17

(14)
where D, = 0?/27" is the generalized diffusion coeffi-
cient with the dimension cm? s~”. One of the main aims of
this Letter is to find the overall propagation of cancer cells
as a result of interaction of the anomalous migration (14),
logistic proliferation, and random migration-proliferation
switching. For this purpose, it is more convenient to define
(1) by its Laplace transform (H) = [1 + (H7)*]" ' [11],
such that the momentum p(H) can be found from (12)

118101-3



PRL 98, 118101 (2007)

PHYSICAL REVIEW LETTERS

week ending
16 MARCH 2007

Pt = (H+B)  BiBo(H + B)!

D D,(H+ B, —U)" (15)

Y

This formula together with (10) allows us to find the over-
all propagation rate of tumor cells u, in the fractional
diffusion case. It is clear that the case y = 1 corresponds
to the normal diffusion approximation for cell migration
(see (12)). One can find from (10), (12), and (15) the ratio
of the anomalous propagation rate u,, and the normal rate u
determined by (13)

u
77 = (HYT + By7) V2,

(16)

where H,, is the solution of dp/dH = p(H)/H. Since the
“microscopic’ time 7 is much smaller than the character-
istic ““cell proliferation” time U~! and switching time B;!
and H, ~ U, we conclude that H7 + B;7 < 1. It follows
from (16) that the ratio u, /u increases with y in the
interval 0 < -y < 1. This means that the standard diffusion
approximation leads to overestimation of the overall can-
cer spreading. It is clear from these two examples of
normal and anomalous diffusions that the advantage of
balance Egs. (1) and (2) is that they are related to ““meso-
scopic’ description of migratory cancer cells, and give us
the statistical meaning of the reaction-diffusion equations
or fractional equations that are introduced usually
phenomenologically.

In summary, we present a two-component model for a
migration-proliferation dichotomy in the spreading of tu-
mor cells in the invasive zone. We use a probabilistic
approach based on the CTRW theory for migration, logistic
growth, and random proliferation-migration switching
with exponentially distributed waiting times. Our approach
is not restricted to the specific mechanism of proliferation
described by a logistic growth. Moreover, Eq. (2) for
proliferation can be accompanied by a nutrient control or
chemotaxis [21]. The main point of the Letter is that cancer
cell transport is subdiffusive rather than diffusive described
by Fick’s law. The advantage of our approach is that it
allows us to take into account anomalous (subdiffusive)
transport within the general scheme of migration, prolif-
eration, and phenotype switching. We show the equiva-
lence of balance equations to a system of master equations
involving memory kernels for the transport of mobile cells.
By using a hyperbolic scaling and Hamilton-Jacobi formal-
ism, we derive formulae for the overall spreading rate of
cancer cells. We show that the memory effects (subdiffu-
sion) lead to a decrease in propagation rate compared to a
standard diffusion approximation for transport.
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