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We perform a Gutzwiller projected-wave-function study for the spin-1=2 Heisenberg model on the
Kagomé lattice to compare energies of several spin-liquid states. The result indicates that a U(1)-Dirac
spin-liquid state has the lowest energy. Furthermore, even without variational parameters, the energy turns
out to be very close to that found by exact diagonalization. We show that such a U(1)-Dirac state
represents a quantum phase whose low-energy physics is governed by four flavors of two-component
Dirac fermions coupled to a U�1� gauge field. These results are discussed in the context of recent
experiments on ZnCu3�OH�6Cl2.
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Recent experimental studies of a spin-1=2 Kagomé sys-
tem ZnCu3�OH�6Cl2 [1–3] show that the system is in a
nonmagnetic ground state. The Kagomé lattice can be
viewed as corner-sharing triangles in two dimensions
[Fig. 1(a)]. The compound shows no magnetic order
down to very low temperature (50 mK) compared with
the Curie-Weiss temperature (>200 K). The spin suscep-
tibility rises with decreasing temperature, but saturates to a
finite value below 0.3 K. The specific heat is consistent
with a linear T behavior below 0.5 K. There is no sign of a
spin gap in dynamical neutron scattering. These observa-
tions led us to reexamine the issue of the ground state of the
spin-1=2 Kagomé lattice.

Based on Monte Carlo studies of Gutzwiller projected
wave functions, we propose the ground state to be a U(1)-
Dirac spin-liquid state which has relativistic Dirac spinons.
The low-energy effective theory is a U(1) gauge field
coupled to four flavors of two-component Dirac fermions
in 2� 1 dimension. This state was studied earlier in the
mean-field approximation [4]. However, that study focused
on an instability toward a valence bond solid (VBS) state
which breaks translation symmetry [4]; it was not appre-
ciated that the U(1)-Dirac state can be a stable phase. Using
the projective symmetry group [5–7] (PSG) technique, we
reconsider the stability of the U(1)-Dirac state and find it
can be stable. Our numerical calculations confirm that
neighbor states like the VBS states and chiral spin-liquid
state all have higher energies.

One way to construct spin-liquid states is to introduce
fermionic spinon operators [8,9] f" and f# to represent the
bosonic spin operator: ~Si � 1

2 f
y
i� ~���fi�. This representa-

tion enlarges the Hilbert space, and a local constraint is
needed to go back to the physical Hilbert space: fy" f" �

fy# f# � 1. For the nearest neighbor Heisenberg model
(with antiferromagnetic exchange J > 0)

 H � J
X
hiji

~Si � ~Sj; (1)

we can substitute the spin operator by the spinon opera-
tors, so that the spin interaction is represented as a four-

fermion interaction. The four-fermion interaction can be
decomposed via a Hubbard-Stratonovich transforma-
tion by introducing the complex field �ij living on the
links. The path integral of the spin model is then Z �R
d�d�dfdfye�S, where the action is

 

S �
Z
d�
�X

i

fyi�@�fi� � i�i�f
y
i�fi� � 1�

�
X
ij

2Jj�ijj
2 � J��ijf

y
j�fi� � H:c:�

�
: (2)

Here � is the Lagrangian multiplier to ensure the local
constraint, and it can be viewed as the time component of a
compact U(1) gauge field, whereas the phase of �ij can be
viewed as the space components of the same gauge field.
Only when the full gauge field fluctuations are included
can one go back to the physical Hilbert space.

With this fermionic representation, one can do a mean-
field study of the spin-liquid states by taking �ij as mean-
field parameters. For the Kagomé lattice, the mean-field
states are characterized by the fluxes through the triangles
and the hexagons. Controlled mean-field studies were done
by generalizing the SU�2� spin model to SU�N� spin model
via introducing N=2 flavors of fermions [4,10], and several
candidate states were found: (i) VBS states which break
translation symmetry. (ii) A spin-liquid state (SL-[�2 , 0])
with a flux��=2 through each triangle on Kagomé lattice
and zero flux through the hexagons. This is a chiral spin
liquid which breaks time-reversal symmetry. (iii) A spin-
liquid state (SL-[� �

2 , 0]) with staggered �=2 flux through
the triangles (� �

2 through up triangles and � �
2 through

down triangles) and zero flux through the hexagons. (iv) A
spin-liquid state (SL-[�2 , �]) with ��=2 flux through the
triangles and � flux through the hexagons. (v) A uniform
RVB spin-liquid state (SL-[0, 0]) with zero flux through
both triangles and hexagons. This state has a spinon Fermi
surface. (vi) A U(1)-Dirac spin-liquid state (SL-[0, �])
with zero flux through the triangles and � flux through
the hexagons. This state has four flavors of two-component
Dirac fermions.
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Among the states (ii)–(v), the chiral spin-liquid SL-[�2 ,
0] has the lowest mean-field energy [10]. But numerical
calculations [11] do not support a large chirality-chirality
correlation, and Hastings [4] found SL-[0,�] to be the state
with the lowest mean-field energy among the nonchiral
spin-liquid states. However, its mean-field energy is still
higher than that of (ii). The above arguments are based on
the 1

N expansion treatment of gauge fluctuations, which
may fail whenN � 2 in the physical case. To clarify which
candidate is the lowest energy spin-liquid state, we do a
Monte Carlo study on the trial projected wave functions
[12].

As we mentioned, fermionic representation enlarges
the Hilbert space. One way to treat the unphysical states
is to do a projection by hand. Given a mean-field ground
state wave function j�mean��ij�i with mean-field parame-
ters �ij, the projected wave function j�prj��ij�i �
PDj�mean��ij�i is a physical state; here PD �

Q
i�1�

ni"ni#� is the projection operator ensuring one fermion per
site. The calculation of energy h�prjjHj�prji can be im-
plemented by a Monte Carlo approach with power law
complexity, which means that one can do a fairly large
lattice [12]. We note that states related by a global trans-
formation �ij ! ��	ij represent the same spin wave func-
tion after projection. This is a special case of the SU�2�
gauge symmetry [13].

For the model of Eq. (1), we did the Monte Carlo
calculation for energies of projected spin-liquid states on
lattices with 8� 8 and 12� 12 unit cells (each unit cell
has 3 sites). We chose mixed boundary conditions, i.e.,
periodic along one Bravais lattice vector, and antiperiodic
along the other Bravais lattice vector. The results are
summarized in Table I.

We found that the U(1)-Dirac state [the projection of the
mean-field state (vi)] has the lowest energy, which is
�0:429J per site. Note that these results change the order
of mean-field energies of the spin liquids (ii)–(vi), where
the chiral spin liquid (ii) was found to be of the lowest
energy. In Table II we list the estimates of the ground state

energy by various methods. It is striking that even though
the projected U(1)-Dirac state has no variational parame-
ter, it has an energy which is even lower than some
numerical estimates of ground state energy. Furthermore,
its energy is very close to the exact diagonalization result
when extrapolated to large sample size. Thus we propose it
to be the ground state of the spin-1=2 nearest neighbor
Heisenberg model on the Kagomé lattice.

Hastings [4] proposed a neighboring VBS ordered state
as an instability of the U(1)-Dirac state. This state can be
obtained by giving the fermions nonchiral masses. In par-
ticular, he proposed a VBS state with a 2� 2 expansion of
the unit cell. The 12 hopping parameters on the boundary
of the star of David (six triangles surrounding the hexagon)
have amplitude �1, while all other hoppings have ampli-
tude �2. Our numerical calculations show that this VBS
ordered state has higher energy (see Table III), so the U(1)-
Dirac state is stable against VBS ordering. Another neigh-
bor state of the U(1)-Dirac spin liquid discussed by
Hastings [4] is obtained by giving the fermions chiral
masses. The resulting state is a chiral spin liquid with
broken time-reversal symmetry, and has � flux through
the triangles and (�� 2�) flux through the hexagons [if
� � 0 the state goes back to the U(1)-Dirac state]. In
Table III we also show that nonzero � increases the energy.

To determine whether the U(1)-Dirac state is a stable
phase, we start with its effective theory

TABLE I. For all candidate projected spin liquids, we list the
energy per site in units of J. The U(1)-Dirac state SL-[0, �] is
the lowest energy state, and its energy is even lower than some
numerical estimates of the ground state energy (see Table II).

Spin liquid 8� 8� 3 lattice 12� 12� 3 lattice

SL-[�2 , 0] �0:4010�1� �0:4010�1�
SL-[� �

2 , 0] �0:3907�1� �0:3910�1�
SL-[�2 , �] �0:3814�1� �0:3822�1�
SL-[0, 0] �0:4115�1� �0:4121�1�
SL-[0, �] �0:42866�2� �0:42863�2�
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FIG. 1. (a) We choose a six-site unit cell for the Kagomé lattice. The sites are labeled 0; . . . ; 5 as shown. Only those bonds depicted
as bold solid lines (positive hopping) and bold dashed lines (negative hopping) are contained within the unit cell. (b) The Brillouin
zone for the doubled unit cell (gray area), with reciprocal lattice basis vectors bi shown. The outer hexagon is the Brillouin zone for the
3-site unit cell of a single up-pointing triangle. The positions of the Dirac nodes are denoted by the black circles. (c) Plot of the band
structure of the U�1�-Dirac state on the line from k � 0 to k � b2 with energy in units of �J (see text). The flat band is doubly
degenerate; all others are nondegenerate. The Fermi level corresponding to one spinon per site is indicated by the dashed line.
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dx3
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@	a
�
2 �

X
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� ���@	 � ia	��	 ��

�
X
�
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�
� � � � ; (3)

where the first term comes from integrating out some
higher energy fermions, and � � � represents other terms
that are generated by interaction. The massless Dirac fer-
mions in the effective theory come from the gapless nodal
spinons in the mean-field theory. The two-component
Dirac spinor fields are denoted by  ��, where � label
the two inequivalent nodes and � the up or down spins.
Also, � �� �  y���

3, and the �	 are Pauli matrices. The
massless fermions lead to an algebraic spin liquid [5,6].
The stability of the U(1)-Dirac state can now be deter-
mined by examining the � � � terms: if � � � terms contain no
relevant perturbations—that is, if all relevant perturbations
are forbidden by microscopic symmetries—then the U(1)-
Dirac state can be stable.

The potential relevant terms are the 16 gauge-invariant,
spin-singlet bilinears of  ��. To see if those bilinears are
generated by interaction or not, we need to study how
lattice symmetries are realized in the effective theory (4).
Because spinons are not gauge invariant, lattice symmetry
is realized in the effective theory as a projective symmetry,
described by a PSG. This means that the realization of
lattice symmetry includes nontrivial gauge transforma-
tions. For example, translation TR by a Bravais lattice vec-
torR acts on the spinons by TR: fi� ! g�i;R�fi0�, where i0

is the image of the site i, and g�i;R� � �1 is a position-
dependent gauge transformation. Upon diagonalizing the
mean-field Hamiltonian for the U(1)-Dirac state and focus-
ing on the low-energy excitations near the Dirac nodes (see
below), the action of TR (and other symmetries) on the
fermions  �� of the effective theory can be worked out.
This in turn determines how the bilinears transform under

microscopic symmetries. The details of this analysis for the
U(1)-Dirac state, which do not differ substantially from
similar analyses of other spin liquids [5–7], will appear in
an upcoming paper; here, we simply give the results.

We find that 15 of 16 bilinears are forbidden by trans-
lation symmetry and time reversal alone. The remaining
bilinear, which is allowed by symmetry, is

P
�;� 

y
�� ��.

This term shifts the spinon Fermi level to make the ground
state to have exactly one spinon per site. In this case, the
lower three of six spinon bands are filled and the spinon
Fermi level is exactly at the gapless nodal points. This
analysis tells us that the U(1)-Dirac state is stable in mean-
field theory (and also in a large-N treatment). Because not
all scaling exponents are known in such an algebraic spin
liquid, perturbations other than fermion bilinears could in
principle lead to an instability. However, so far, the varia-
tional wave function analysis suggests that this is not the
case and that the U(1)-Dirac state is stable.

Now we study the U(1)-Dirac spin liquid on the mean-
field level. The U(1)-Dirac mean-field state is defined as
the ground state of the following tight-binding spinon
Hamiltonian: Hmean�J

P
hiji�ijf

y
j�fi��H:c:. All �ij have

the same magnitude and they produce zero flux through the
triangles and � flux through the hexagons.

Although the U(1)-Dirac state does not break translation
symmetry (because the translated state differs from the
original state only by a gauge transformation), the unit
cell has to be doubled to work out the mean-field spinon
band structure. One can fix a gauge in which all hoppings
are real as shown in Fig. 1(a). In this gauge the Dirac nodes
are found to be at k � �0;� ���

3
p
a
� as shown in Fig. 1(b) and

1(c), where a is the Kagomé unit cell spacing, i.e., twice
the nearest neighbor distance. These are isotropic Dirac
nodes; i.e., the Fermi velocity is the same in all directions.
In the extended zone scheme, the Dirac nodes form a
triangular lattice in momentum space with lattice spacing
2���
3
p
a

. The positions of the Dirac nodes are gauge dependent,

but the momentum vectors connecting any two Dirac nodes
are gauge invariant. Because the spinon excitations are
gapless at the nodal points, we expect the spin-1 excitations
of the U(1)-Dirac spin liquid are also gapless at zero mo-
mentum and those momenta connecting two Dirac nodes.

For the ZnCu3�OH�6Cl2 compound, the Heisenberg cou-
pling was estimated to be J 
 300 K [1], and one can

TABLE III. We list the energy per site in unit of J for possible instabilities of the U(1)-Dirac spin liquid, which were discussed in
Ref. [4] (see text). Both VBS order and chiral spin liquid increase the energy. Note that both the VBS and chiral spin-liquid states are
obtained by continuous deformations of the U(1)-Dirac wave function; because we are checking local stability, the parameters used
here correspond to small deformations, and the energy differences are rather small.

State 8� 8� 3 lattice 12� 12� 3 lattice

U(1)-Dirac spin liquid �0:42866�2� �0:42863�2�
VBS state (j�1=�2j � 1:05) �0:42848�2� �0:42844�2�
VBS state (j�1=�2j � 0:95) �0:42846�2� �0:42846�2�
Chiral spin liquid (� � 0:05) �0:42857�2� �0:42853�2�

TABLE II. We list the previous estimates for ground state
energy in units of J.

Method Energy per site

Exact diagonalization [11] �0:43
Coupled cluster method [14] �0:4252
Spin-wave variational method [15] �0:419
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calculate the Fermi velocity at mean-field level. We find
vF �

a�J��
2
p

@
, where � is the magnitude of the self-consistent

mean-field parameter. Hastings [4] found � � 0:221. �
describes the renormalization of the spinon bandwidth
and is not expected to be given quantitatively by the
mean-field theory. Hence in the formulas below we retain
� as a parameter. We find vF �

a�J��
2
p

@
� 19�� 103 m=s.

We can also calculate the specific heat at the mean-field
level. At low temperature (kBT � �J), one expects a C /
T2 law because of the Dirac nodes. The coefficient is
related to vF:

 

C

T2
�

72��3��k3
BA

�2�@vF�2
�1:1��2�10�3 Joule=molK3; (4)

where A is the area of the 2-D system. [Note that for
ZnCu3�OH�6Cl2 compound, the unit cell spacing a �
6:83 �A, so A � 2:4� 105 m2=mol, where mole refers to
one formula unit. We also used the fact that there are four
two-component Dirac fermions.]

In a magnetic field, the spinons will form a Fermi pocket
whose radius is proportional to magnetic field strength.
Therefore, at low temperature kBT � 	BB, the specific
heat is linear in T:

 

C
T
�

8�3k2
BA	BB

3�2�@vF�
2 � 0:23��2B� 10�3 Joule=mol K2;

where magnetic field B is in unit of Tesla. We also find in
the temperature range 	BB� kBT � �J,

 C �
24�Ak3

BT
2

�2�@vF�2

�
3��3� �

2 ln2

3

�
	BB
kBT

�
2
�O�B4�

�
:

Keeping the lowest order correction, the specific heat has a
temperature independent increase proportional to B2.

 �C �
16� ln2kBA

�2�@vF�2
�	BB�

2

� 6:3��2B2 � 10�5 Joule=mol K: (5)

This is in contrast to the specific heat shift of a local
moment, which decreases with T as B2=T2. Equation (5)
provides a way to separate the Dirac fermion contribution
from that of impurities and phonons.

The gauge field also gives a T2 contribution to the
specific heat. However, in a large-N treatment this will
be down by a factor of 1=N compared to the fermion
contribution. Furthermore, the self-energy correction due
to gauge fluctuations does not lead to singular corrections
to the Fermi velocity [16], so the T2 dependence of C is a
robust prediction.

We notice that experiment observed that the specific heat
of Kagomé compound ZnCu3�OH�6Cl2 behaves as C /
T2=3 in zero magnetic field over the temperature window
106 mK< T < 600 mK [1], which is enhanced from C /
T2 law. This enhancement is suppressed by a modest
magnetic field [1]. Furthermore, over a large temperature

range (10 K to 100 K), the spin susceptibility is consistent
with Curie’s law with 6% impurity local moment [3]. We
propose that these impurity spins (possibly due to Cu
located on the Zn sites) may be coupled to the spinons to
form a Kondo type ground state with a Kondo temperature
& 1 K, thus accounting for the large C=T and the satura-
tion of the spin susceptibility below 0.3 K. The Kondo
physics of impurities coupled to Dirac spinons is in itself a
novel problem worthy of a separate study. Meanwhile, it
appears to dominate the low temperature properties and
obscure the true excitations of the Kagomé system. We
propose that a better place to look for the Dirac spectrum
may be at higher temperature (above 10 K) and as a
function of magnetic field, where the impurity contribu-
tions may be suppressed and the unique signature of Eq. (4)
and (5) may be tested. On the other hand, we caution that
from Fig. 1(c), the spinon spectrum deviates from linearity
already at a relatively low-energy scale (�0:5�J). Our
theory also predicts a linear T spin susceptibility of kBT �
�J. Knight shift measured by Cu NMR is the method of
choice to separate this from the impurity contribution.

Finally we remark on a possible comparison with exact
diagonalization studies which found a small spin gap of
� J

20 and a large number of low-energy singlets [11]. It is
not clear whether these results can be reconciled with a
U�1�-Dirac spin liquid. Here we simply remark that in a
finite system the Dirac nodes can easily produce a small
triplet gap and that the gauge fluctuations may be respon-
sible for low-energy singlet excitations.
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