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In layered superconductors (SC) with small interlayer Josephson coupling vortex-antivortex phase
fluctuations characteristic of quasi two-dimensional (2D) Kosterlitz-Thouless behavior are expected to be
observable at some energy scale Td. While in the 2D case Td is uniquely identified by the KT temperature
TKT where the universal value of the superfluid density is reached, we show that in a generic anisotropic
3D system Td is controlled by the vortex-core energy, and can be significantly larger than the 2D scale
TKT. These results are discussed in relation to recent experiments in cuprates, which represent a typical
experimental realization of layered anisotropic SC.
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Since the pioneering work of Kosterlitz and Thouless [1]
(KT) on the so-called KT transition in the two-dimensional
(2D) XY model, much attention has been devoted to the
effect of phase fluctuations in quasi-2D superfluid systems.
Thin films are natural candidates for the observation of KT
physics, as the occurence of the ‘‘universal’’ (i.e., sample
independent) jump of the superfluid density, measured in
4He superfluid films, or the nonlinear I-V characteristic,
observed in thin films of conventional SC [2]. Signatures of
KT physics can be expected also in layered SC with weak
interlayer coupling. A remarkable example of systems
belonging to this class are underdoped samples of
high-Tc SC [3]. Recently, various experiments ranging
from finite-frequency conductivity [4,5], Nerst effect [6]
and nonlinear magnetization [7] have been interpreted as
signatures of KT phase fluctuations. Nonetheless, any ef-
fect reminiscent of the universal jump of the superfluid
density at TKT, which would be the most direct probe of KT
physics, failed to be observed [8–12].

Until now, the 2D-3D crossover in anisotropic layered
SC has been discussed mainly within the framework of the
anisotropic 3D XY model [13–17]

 HXY � �
X
hiji

Jij cos��i � �j�: (1)

Here �i;j is the superconducting phase on two nearest-
neighbor sites (i, j) of a coarse-grained lattice, on the
same plane (Jij � Jab) or in neighboring planes (Jij �
Jc). The energy scales Jab, Jc can be related to the mea-
sured 3D superfluid density �s at T � 0 as
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where �ab, �c represent the in-plane and out-of-plane
penetration depth, respectively, m is the electron mass, a

is the in-plane lattice spacing, and d is a transverse length
scale (i.e., the interplane distance) used to define the ef-
fective 2D areal superfluid density �2d

s � d�s. In a 2D
system vortex fluctuations drive �2d

s �T� to zero at TKT
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where the temperature dependence of �2d
s �T� includes also

the effect of other excitations, like long-wavelength phase-
fluctuations of the model (1) or BCS-like quasiparticles
excitations [3,9,18,19]. Within the anisotropic XY model
(1) a finite interlayer coupling Jc cuts off the logarithmic
divergence of the in-plane vortex potential at scales
�a=

����
�
p

[13], where � � Jc=Jab, so that the superfluid
phase persists above TKT, with Tc at most few percent
larger than TKT [14–16]. As far as the superfluid density
is concerned, there is some theoretical [14] and numerical
[17] evidence that even for moderate anisotropy the uni-
versal jump at TKT is replaced by a rapid downturn of �s�T�
at a temperature scale Td ’ TKT.

However, recent measurements of �s�T� in strongly
underdoped YBa2Cu3O6�x (YBCO) samples [11,12]
(with large �� 10�4 anisotropy [12,20]), showed that
no downturn of �s�T� is observed at the KT tem-
perature defined by Eq. (2), but eventually at a scale
Td � Tc [11]. Analogously, recent measurements of
the phase-fluctuations diamagnetism in underdoped
Bi2Sr2CaCu2O8�� (Bi2212) [7] revealed that the phase
correlation length � above Tc can be fitted with the typical
KT law, provided that the effective KT temperature is few
kelvin smaller than Tc. In both cases, by looking at the
system from below or above Tc, it appears that the typical
temperature scale where vortex fluctuations become rele-
vant is always near Tc, regardless of the value (2) of the
TKT of the pure 2D case.

In this Letter we analyze the role played by the interlayer
coupling and the vortex-core energy at the crossover from
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2D KT to 3D superconducting behavior in layered SC. In
particular, we focus on the behavior of the superfluid
density below Tc and of the correlation length above Tc.
We carry out a renormalization group (RG) analysis using
the mapping between the thermal metal-SC KT transition
in two dimensions and the quantum metal-insulator tran-
sition in the 1D sine-Gordon model [21]. Indeed, a similar
model has been studied in Ref. [22] to investigate the
superfluid-insulator transition in optical lattices of 1D
boson chains, where the tunneling interchains amplitude
plays the same role of the Josephson coupling in layered
SC. We show that in the presence of a finite interlayer
coupling the superfluid density looses its universal charac-
ter. The jump in �s�T� at TKT observed in the 2D case is
replaced by a downturn curvature at a temperature Td
which depends on the vortex-core energy �. While in
XY models, where � is fixed by the in-plane coupling
Jab [see Eq. (6)], Td ’ TKT, in the general case the ratio
Td=TKT increases as �=Jab increases. Analogously, by
approaching the transition from above, the increasing of
the phase-fluctuation correlation length is controlled by the
scale Td instead of the TKT of the pure 2D system. Based on
these results, we argue that the various experimental data in
cuprates concerning KT behavior can be reconciled if � is
larger than the typical XY value.

Let us first recall briefly the basic features of the KT
transition using the analogy with the quantum 1D sine-
Gordon model [2,21], defined as

 Hsg �
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Following standard definitions [21], � and @x	 represent
two canonically conjugated variables for a 1D chain of
length L, with ���x0�; @x	�x�	 � i���x0 � x�, K is the
Luttinger-liquid (LL) parameter, vs the velocity of 1D
fermions, and gu is the strength of the sine-Gordon poten-
tial. For gu � 0 the action of the model (3) can be sim-
plified by integrating 	 and rescaling 
! vs
, so that
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K
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Z
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��@x��2 � �@
��2	; (4)

equivalent to the gradient expansion of the model (1), with

 as the second spatial dimension. Note that in the
Hamiltonian notation (3) the coefficient of the dual field
is 1=K, while the rotational in-plane symmetry of the
model (1) is recovered in the action (4). Besides the
long-wavelength phase fluctuations present in Eq. (4), vor-
tex configurations are possible, which require

H
r� �


2� over a closed loop. Since 	 is the dual field of the
phase �, a 2� kink in the field � is generated by the
operator ei2	 [21], i.e., by the sine-Gordon potential in
the Hamiltonian (3). The correspondence between the
quantum 1D and the classical 2D system is then completed
by using

 K �
�Jab
T

; gu � y � 2�e���; (5)

where y is the vortex fugacity. In the 2D XY model (1)
(with Jc � 0) one has a single energy scale given by Jab, so
that the vortex-core energy � is given by [1,2]

 �XY � �Jab ln�2
���
2
p
e�� ’ 1:6�Jab; (6)

where � is the Euler’s constant. However, � depends in
general on the details of the microscopic superconducting
model under consideration, so it will be taken as a free
parameter in the following, while the value (6) will be used
just for the sake of comparison with the XY model (1). It is
worth noting that the limitations of the XY model as an
effective phase-only model have been pointed out in
Ref. [18], as far as the role of the phase-interaction terms
beyond Gaussian level are concerned. The effect of the
interlayer coupling Jc of Eq. (1) can be incorporated in the
sine-Gordon model (3) as an interchain hopping term, so
that the full Hamiltonian becomes

 H �
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(7)

where m is the chain (layer) index and gJc � �Jc=T. We
derived the perturbative RG equations for the couplings of
the model (7) by means of the operator product expansion,
in close analogy with the analysis of Ref. [22]. Under RG
flow an additional coupling g? between the phase in
neighboring chains is generated
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The superfluid coupling Ks is defined, as usual [17], as the
second-order derivative of the free energy with respect an
infinitesimal twist � of the phase, @x�m ! @x�m � �. The
interlayer term (8) contributes as K ! K�1� ng?� to the
current-current coefficient, where n � 2 is the number of
nearest-neighbors chains (layers). Thus, the in-plane stiff-
ness Js is defined as:

 Ks � K � nKg?; Js �
�2d
s

4m
�
KsT
�

: (9)

The full set of RG equations for the couplings K, Ks, gu,
gJc reads
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with ‘ � log�a=a0�, where a0, a are the original and RG
rescaled lattice spacing, respectively. Observe that for
gJc � 0 the first two equations reduce to the standard
ones of the KT transition [1], with a fixed point at K �
2, gu � 0, and Ks coincides with K. Thus, one sees that at
K > 2 the gu coupling is irrelevant, the quantum 1D sys-
tem is a LL and the vortex-antivortex pairs are bound in the
classical 2D system. At K < 2 the gu term is relevant, the
	 field is locked in a minimum of the cos�2	� potential
and the 1D system is an insulator. In the classical case this
corresponds to the proliferation of vortexes (large vortex
fugacity) in the metallic phase. The physical superfluid
stiffness is given [2] by the asymptotic value of the running
coupling Ks�‘� � K�‘�. Thus, Js is finite below TKT, since
K�‘� flows to a finite value [in particular K�1� � 2 at TKT,
in accordance to Eq. (2)], and it goes to zero above the
transition, since K�‘� scales to zero. The KT temperature is
defined by the highest temperature where K�1� � 2, and it
is given (at small gu) by K�T� � 2 � 2gu�T�, which yields
TKT ’ �Jab=2.

As an initial value gJc � 0 is considered, the interchain
(interlayer) coupling increases under RG [14–16], leading
to larger values of the LL parameter K�‘� and stabilizing
the metallic 1D phase. However, when the initial gu cou-
pling is sufficiently large the second term in the right-hand
side of Eq. (10) dominates andK�‘� goes to zero, leading to
the insulating 1D phase. In the classical 2D analogous case,
the effects of gJc are easily readable through the behavior
of Ks, which is controlled by the gu coupling alone.
Whenever K�‘� scales to large values the gu coupling is
irrelevant and Ks flows to a constant; see Fig. 1. This effect
guarantees the persistence of the superfluid phase in a
range of temperature above TKT. Indeed, the initial de-
crease of Ks�‘� is cut off at a finite length scale by the
interlayer coupling, which brings again K�‘� to large val-
ues and gu�‘� to zero, giving a finite asymptotic value of
Ks�‘�. As the temperature increases further and the gu term
dominates, both K and Ks scale to zero, the scaling dimen-

sion of gJc becomes negative and one observes a ‘‘layer
decoupling’’ above Tc [15,16].

The critical temperature Tc is defined by the vanishing of
the Ks�‘! 1�. Alternatively, to account for the perturba-
tive character of the RG equations, one can compute Js by
stopping the RG flow at the scale ‘� where gJc is of order
one [23]. The two definitions are equivalent, and lead to the
estimate of the critical temperature Tc reported in the inset
of Fig. 1. For the sake of completeness, we also added a
temperature dependence of the bare couplings, using
J0�T� � Jab�1� T=4Jab�, as due to long-wavelength
phase fluctuations in the XY model (1) [17,18], and we
keep the ratios � � Jc=Jab and�=Jab fixed. For� � �XY
the calculated values of Tc=Jab show a remarkable quanti-
tative agreement with Monte Carlo simulations on the
anisotropic XY model [17]. The fact that larger values of
� lead to a larger critical temperature has a direct counter-
part on the temperature dependence of the superfluid stiff-
ness Js�T�, as we show in Fig. 2. As one can see, when
Jc � 0 we recover the standard jump of Js at TKT, which is
easily identified as the temperature where the curve Js�T�
intersects the line 2T=�, according to Eqs. (2) and (9)
above. As � increases the gu coupling decreases, and the
renormalization of Js�T� with respect to J0�T� below TKT

becomes negligible. As soon as a finite interlayer coupling
is switched on, the jump of Js�T� at TKT disappears and it is
replaced by a rapid bending of Js�T� at some temperature
Td. However, while for � 
 �XY Td coincides essentially
with TKT, for a larger vortex-core energy Td rapidly in-
creases and approaches the temperature Tc estimated
above.

These results offer a possible interpretation of the ex-
periments in underdoped YBCO [12], where �� 10�4

[20], but the measured Js�T� goes smoothly across the
TKT estimated from Eq. (2). We calculated Js�T� as done
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FIG. 1 (color online). RG flow of the couplings K�‘� and Ks�‘�
at various temperatures for � � �XY and � � 10�4. Inset:
critical temperature Tc as a function of � for a bare stiffness
J0�T� � Jab�1� T=4Jab� (see text).
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FIG. 2 (color online). Temperature dependence of Js�T� in two
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J0�T� � Jab�1� T=4Jab�. The TKT is identified by the intersec-
tion between Js�T� and the straight line 2T=�. The results for
� 
 �XY show a rapid downturn of Js�T� at Td ’ TKT. As �
increases Td increases as well, so that at TKT no effect is
observed in Js�T� reminiscent of the jump present in two
dimensions.
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in Fig. 2 (taking into account also the measured linear
depletion at low T [24]). Using a large vortex-core energy,
i.e., � � 6�XY , we found that Js�T� shows no signature of
a rapid downturn at TKT, and goes to zero near to the
measured Tc. Observe that we did not consider the effects
of disorder, which can also smear out the KT transition, as
measurements in thin films [4,25] could suggest.

A similar separation between TKT and Td is observed in
the behavior of the correlation length above Tc. Since
the quantity experimentally accessible is the vortex den-
sity nV , given at the RG scale ‘ � ln�a=a0� by nV�‘� �
e����‘�=a2 � gu�‘�=�2�a2�, we define the correlation
length � as ��2 � nV�‘s�, where as � a0e‘s is the length
scale where Ks�‘s� vanishes above Tc. The behavior of
��T� for different values of � and � is reported in Fig. 3,
using parameter values appropriate for Bi2212 com-
pounds. Far above Tc as � a0, so that � scales as
a0=

���������������������
gu�T�=2�

p
, as shown by the dashed line. As T ap-

proaches Tc ‘s increases and � shows the exponential
increase reminiscent of the KT behavior in two dimen-
sions [1]. However, while in two dimensions, � diverges
at TKT, a finite Jc cuts off at Tc the increasing of �,
since below Tc gu becomes irrelevant and Ks flows to a
finite value. Nonetheless, the behavior of � above Tc
is still reminiscent of the KT behavior, �KT � a0c�
exp�b=

��������������������
T=Td � 1

p
�, with c, b of order one, provided that

TKT is replaced by a proper scale Td slightly smaller than
Tc. Once again, while for � � �XY Td � TKT, as the
vortex-core energy increases Td becomes significantly
larger than TKT and approaches Tc. This behavior is con-
sistent with recent experiments in Bi2212 compounds [7].

In summary, we analyzed the phase-fluctuations contri-
bution to the 2D KT-3D crossover in strongly anisotropic
layered SC. Using a RG approach, we showed that a finite

interlayer coupling can shift the temperature scale Td of
vortex unbinding away from the KT temperature TKT of the
pure 2D case. Indeed, Td is essentially controlled by the
vortex-core energy, and it coincides with TKT only when
� & �XY , as within the standard XY model (1). When
applied to cuprates, our findings suggest that in these
systems � is definitively larger than expected in the XY
model, even though still of order of the in-plane stiffness.
The consequences are twofold. First, the lack of any sig-
nature of KT behavior in Js�T� at TKT does not rule out the
possibility that phase fluctuation effects play a role in these
systems. Second, �>�XY is not inconsistent with micro-
scopic theories which associated � to the energy scale of
the superfluid stiffness instead of that of the superconduct-
ing gap, which would be far too large compared to Js in
underdoped samples [3].
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