
Spectroscopy of the Fractional Vortex Eigenfrequency in a Long Josephson 0-� Junction

K. Buckenmaier,1 T. Gaber,1 M. Siegel,2 D. Koelle,1 R. Kleiner,1 and E. Goldobin1,*
1Physikalisches Institut–Experimentalphysik II, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
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Fractional Josephson vortices carry a magnetic flux �, which is a fraction of the magnetic flux quantum
�0 � 2:07� 10�15 Wb. Their properties are very different from the properties of the usual integer
fluxons. In particular, fractional vortices in 0-� Josephson junctions are pinned and have an oscillation
eigenfrequency which is expected to be within the Josephson plasma gap. Using microwave spectroscopy,
we investigate the dependence of the eigenfrequency of a fractional Josephson vortex on its magnetic flux
� and on the bias current. The experimental results are in good agreement with the theory.
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Vortices in long Josephson junctions (LJJs) usually carry
a single magnetic flux quantum �0 and therefore are called
fluxons. The study of fluxons has attracted a lot of attention
during the last 40 years because of their interesting non-
linear nature [1–3] as well as because of potential appli-
cations [4,5].

Recently, it turned out that one can create and study
experimentally vortices that carry only a fraction of the
magnetic flux quantum [6]. Initially, vortices carrying only
�0=2 (semifluxons) were observed and studied [9–11].
They exist in the so-called 0-� LJJs [12–14] consisting
of 0-parts, having the usual current-phase relation (CPR)
js � jc sin���, and �-parts, having negative critical cur-
rent or, equivalently, the CPR shifted by �, i.e., js �
�jc sin��� � jc sin��� ��. Here js and jc are the super-
current and the critical current densities and � is the
Josephson phase. 0-� LJJs can be fabricated using various
technologies, e.g., based on d-wave superconductors [9–
11,15] or on a ferromagnetic barrier [16–18].

In contrast to a fluxon, which is a freely moving soliton,
a semifluxon is like a spin- 1

2 particle—it is pinned at a 0-�
boundary and has two possible polarities � 1

2 �0. Semi-
fluxons are very interesting nonlinear objects: they can
form a variety of groundstates [19–22], may flip [9,10]
emitting a fluxon [21,23,24], or rearrange [25] by a bias
current. Huge arrays of semifluxons were realized [10] and
predicted to behave as tunable photonic crystals [26].
Semifluxons can also be used for storage of classical
information and to build qubits [27].

From the above CPRs it is clear that one can always
describe the supercurrent flowing across the whole LJJ as
js � jc sin��� with the phase ��x� being �-discontinuous
at the boundaries between the 0 and � regions. In essence,
a semifluxon appears to compensate this discontinuity and
to minimize the total energy. Using an artificial trick with
two tiny current injectors, we suggested creating not only
�, but any arbitrary � discontinuity of the phase, i.e., a so-
called 0-� LJJ. Thus, one can study the arbitrary�� vortex
[carrying the flux � � ��0�=�2��], which automatically
appears to compensate the � discontinuity [28,29]. Such an

approach is particularly interesting as the value of � / Iinj

(current through injectors) and can be tuned during experi-
ment [28,29].

In fact, two types of fractional vortices may exist in a
0-� LJJ: a direct �� vortex, and a complementary 2�� �
vortex [29]. The ‘‘smaller’’ vortex corresponds to the
ground state of the system, while the ‘‘bigger’’ one to the
excited state. In the case � � �, both vortices correspond
to mirror symmetric semifluxons with a doubly degenerate
ground state. Note, that the fluxon (� � 2�) is an excited
state of the system, with a constant phase being the ground
state. Only using topological protection, e.g., an annular
LJJ, one can trap the fluxon reliably.

While, being a soliton, the fluxon may freely move along
the LJJ under the action of various forces (driving, friction,
magnetic field gradient), the fractional vortex can only
bend or deform, but it always stays in the vicinity of the
0-� boundary. When the forces are released, the fractional
vortex recovers its equilibrium shape, performing decaying
oscillations around the equilibrium position [30], provided
the system is underdamped.

It is crucial to know the eigenfrequencies of a frac-
tional vortex. First, any classical device, which uses frac-
tional vortices, should not operate at frequencies in the
vicinity of the eigenfrequency (parasitic resonance).
Second, an eigenfrequency gives hints about the stability
of certain vortex configurations, namely, a low eigenfre-
quency is a clear sign that the system is close to an
instability region; i.e., it may be sensitive to thermal noise,
etc. Third, in the quantum domain, the eigenfrequency !0

defines the attempt frequency for macroscopic quantum
tunneling, while, @!0 defines the energy gap between the
ground state and the first excited (plasmon) state in the
system.

In this Letter we report on the first experimental inves-
tigation of the eigenfrequency of a fractional Josephson
vortex. Using microwave spectroscopy we measure the
eigenfrequency as a function of � (or the flux � carried
by the vortex) and applied bias current (which deforms the
vortex and changes its eigenfrequency).
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The eigenfrequency !0 of a single fractional vortex in
an infinite 0-� LJJ at zero normalized bias current � �
I=Ic0 � 0 and vanishing damping � � 0 is [30]

 !0��; 0� � !p0
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Here Ic0 � jcwL is the ‘‘intrinsic’’ critical current, w and
L are the width and length (circumference) of the LJJ, and
jc is the critical current density. In Eq. (1) the prefactor
!p0 �

��������������������������
2�jc=��0C�

p
is the intrinsic zero bias plasma

frequency related to specific capacitance C of the
Josephson barrier and jc. For � � 0 the analytical expres-
sion for!0��; �� is unknown, but one can approximate it as

 !0��; �� � !0��; 0�
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is the normalized critical current of the junction (depinning
current of the fractional vortex) at given � [23,31,32].
Approximation (2) follows the same functional depen-
dence as the plasma frequency of a small JJ [33,34]

 !p��� � !p0

���������������
1� �24

q
; (4)

i.e., Eq. (2) is exact for � � 0. It will serve as a guide for
planning and performing the experiment.

For the experiments we used tunnel Nb-AlOx-Nb annu-
lar LJJ (ALJJ) equipped with two pairs of current injectors
as shown in Fig. 1. The tunnel ALJJ has low damping and
allows us to perform resonant excitation of the fractional
vortices and perform spectroscopy. The annular geometry,
where the total topological charge is fixed, prevents flip-
ping of a direct vortex to a complementary one with
emission of a fluxon. Even if this happens, upon reset to

the zero voltage state, the fluxon will be reabsorbed, turn-
ing the vortex into the initial state. Using the injectors we
can change the value of � during experiment and inves-
tigate !0��� (see below).

The ALJJ has a mean radius R � 30 �m, the width of
the injectors and the distance between them are 5 �m. The
Josephson penetration depth �J � 43 �m was estimated
taking into account the idle region [35]. The normalized
length of the ALJJ, thus, is ‘ � 4:35.

Injectors are used to create a phase ‘‘discontinuity’’ � on
the length scale 	 �J. The short section of the top elec-
trode between points A and B in Fig. 1 has an inductance
Linj. A current Iinj passing through the inductance Linj

creates a phase drop � � LinjIinj2�=�0 across the short
distance AB, i.e., the � discontinuity. To calibrate injectors
we have measured the critical current Ic as a function of Iinj

for the left injector pair in Fig. 1. This Ic�Iinj� is presented
in Fig. 2 and looks like a perfect Fraunhoffer pattern in
accord with the theory (3) [23,31,32]. The first minimum at
Imin

inj � �6:92 mA corresponds to � � �2�. Thus, for any
Iinj, the corresponding value of � can be calculated as � �
2�Iinj=jI

min
inj j.

The measurements of the eigenfrequency were per-
formed using resonant excitation of the fractional vortex
by microwaves as follows. We apply a microwave radiation
of fixed frequency!ex and power P to our 0-� ALJJ with a
� vortex. Then we ramp the bias current I from zero up to
above Ic and observe at which current I1 our ALJJ switches
to nonzero voltage. Since, according to Eq. (2), the eigen-
frequency decreases with the bias current, by ramping I
one may reach the resonant condition !0��; �� � !ex at
some �1 � I1=Ic0. The fractional vortex will be resonantly
excited and will switch the ALJJ to the voltage state. In
fact, we have been ramping the bias current many times,
and have measured the escape histogram, which represents
the probability of switching to the voltage state as a func-
tion of bias current �; see Figs. 3(a) and 3(b). These

 

FIG. 1. Optical image (top view) of the investigated sample:
ALJJ with two pairs of injectors. The phase discontinuity ��,
created by injectors induces a � vortex. The microwaves induce
ac current Iac in the bias leads which adds up with the dc bias
current I supplied by the current source.

 

FIG. 2. The dependence Ic�Iinj� measured at T � 4:2 K (sym-
bols) and corresponding theoretical curve (continuous line).
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histograms typically have two peaks. The first peak (at
smaller I) at the intersection of !0��; �� and !ex

[Fig. 3(c)] corresponds to the resonant excitation of the
phase ��x� (in our case fractional vortex or phase-particle
from the tilted washboard potential [34]) by microwaves.
The second peak (at larger I) corresponds to the thermally
activated escape of the Josephson phase from the potential
well when the well becomes very shallow at I approaching
Ic���, see Refs. [33,34] for discussion of thermal escape in
pointlike JJ. Note, that the critical current of our ALJJ
depends on � as described by Eq. (3) and shown in
Fig. 2. The shape of thermal escape peak depends on the
bias current ramp rate, on the bath temperature T and on
the electronic noise [36]. Higher T leads to a broader peak
shifted towards lower currents, which obscures the reso-
nant activation peak especially for low !ex (high �). The
electronic noise has, to the first order, the same effect as the
increase of T. Therefore, our setup was optimized as
described below to keep the broadening caused by the
electronic noise below the one caused by T.

The power P of the applied microwaves was kept as low
as possible, but such that the first peak in the histogram is
still visible. By increasing P the height of the first peak
increases, but its position shifts due to the nonlinearity of

the resonance. Accordingly, the height of the second peak
decreases and it also shifts to lower �. Measurements
turned out to be easier at lower power and large � when
the particle is in the shallow well and both peaks are close.
On the other hand, to resonantly excite the particle from the
deep well (small �), high power, which leads to nonlinear
effects, is needed. Therefore the measurement results for
high !ex (low �) are not so accurate as for low !ex (high
�). The measurement technique and setup are similar to
those described in Ref. [37].

Before measuring the eigenfrequency of a vortex and
comparing it with the theory, we have to measure the
plasma frequency !p0 and Ic0 with reasonable accuracy.
To do this we excite our system by microwaves and make
escape measurements at Iinj � � � 0. In this case the
ground state of the system corresponds to a uniform phase
��x� � arcsin��� and the lowest eigenfrequency is the
plasma frequency !p���, Eq. (4), corresponding to spa-
tially uniform oscillations (like in a pointlike junction).
Formally, the plasma frequency is the eigenfrequency of a
� vortex with � � 0, i.e., !p��� � !0�0; ��. Escape histo-
grams were measured for different !ex (with Iinj � � � 0)
and the position of the first peak I1�!ex� was, after invert-
ing from I1�!ex� � I1�!p� to !p�I1�, fitted using the theo-
retical dependence !p��� (4) as shown in Fig. 3(c). The
fitting gives !p0=2� � 42:73 GHz and a noise free Ic0 �

961 �A. Note that Ic0 represents the value of jc most
accurately. The critical current Ic � Imax

s � 936 �A mea-
sured from the thermal escape peak without microwaves
represents the maximum supercurrent and has a somewhat
lower value because of the slightly nonuniform current
distribution in our ALJJ geometry. The critical current
IIVC
c � 895 �A measured from the I-V characteristic

(IVC) or from Ic�Iinj� at Iinj � 0 (Fig. 2) is even lower.

 

FIG. 4. Comparison between the theoretical curves with mea-
surements of the eigenfrequency.

 

FIG. 3 (color online). Principle of the measurements. The
escape histogram measured at !ex=2� � 29 GHz (a) for � �
0, i.e., !p��� � !0�0; �� and (b) for fractional vortex � �
0:82�. The histograms show two peaks corresponding to reso-
nant escape and thermal activation. (c) shows the numerically
simulated dependences !0�0:82�; �� (2) and !p��� (4). Applied
frequency !ex is shown by the horizontal line.
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An independent numerical study of a microwave driven
pointlike Josephson junction predicts that the position of
the first peak is somewhat below the plasma resonance [38]
calculated using Eq. (4). For a LJJ the situation may be
even more complicated as the effective 1D potential may
depend on various parameters, e.g., externally applied
magnetic field [39] or trapped flux. For an ALJJ there are
no theoretical calculations or numerical simulations so far.
In this work we assume that !p��� is well described by
Eq. (4) even for an ALJJ.

To measure the eigenfrequency of a � vortex we re-
peated escape measurements for � / Iinj > 0. We have
measured many escape histograms for a range of !ex and
Iinj (i.e., �), and were able to plot !0��; I�. Knowing !p0

and Ic0 from the plasma frequency measurements we have
plotted the dependence !0��; �� in normalized units in
Fig. 4. The theoretical curves !0��� at different � are
shown for comparison. To simulate them, we first numeri-
cally solved the sine-Gordon equation for an ALJJ with
injectors of finite width to find the static state of the system.
Then, to find the eigenfrequency, we have solved the
associated eigenvalue problem numerically and, among
all eigenfrequencies, selected the lowest positive one
(imaginary part of eigenvalue).

Figure 4 shows that the experimental results are in good
agreement with the theoretical predictions. Comparing the
simulation results for finite injector sizes with the ones for
ideal (pointlike) injectors, we saw that the eigenfrequency
in Fig. 4 shifts towards larger � (or !0 increases for fixed
�) as injectors get larger. Although we have included the
geometrical dimensions of our injectors in simulations
presented in Fig. 4, one can see that the experimental
points are still somewhat shifted towards larger �. This
indicates that the effective injector size is larger than its
geometric size.

We note that for low values of � in Fig. 4 the accuracy of
our measurements is limited by nonlinear effects. For large
� (low !ex) the measurements are limited by the thermal
width of the peaks in the escape histogram. To study
!0��; �� for �! 1 we are going to perform the same
measurements at T < 4:2 K.

In summary, we have performed spectroscopy of the
fractional vortex eigenfrequency !0��; �� in an annular
long Josephson tunnel junction. The agreement of our
results with the model confirms the concept of an artificial
vortex with tunable fractional flux pinned at the phase
discontinuity. This opens up new possibilities for further
experimental studies of vortex molecules and fractional
vortex crystals where one expects tunable splitting of
eigenfrequencies [30] and tunable plasmonic band struc-
ture [26], accordingly.
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