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A new effect in graphene in the presence of crossed uniform electric and magnetic fields is predicted.
Landau levels are shown to be modified in an unexpected fashion by the electric field, leading to a collapse
of the spectrum, when the value of electric to magnetic field ratio exceeds a certain critical value. Our
theoretical results, strikingly different from the standard 2D electron gas, are explained using a ‘‘Lorentz
boost,’’ and as an ‘‘instability of a relativistic quantum field vacuum.’’ It is a remarkable case of emergent
relativistic type phenomena in nonrelativistic graphene. We also discuss few possible experimental
consequence.
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Graphene has been in the forefront of nanoelectronics
and quantum condensed matter physics over the last couple
of years. The mechanical rigidity, being able to peel off
single graphene layer [1] and the ability to make electrical
contacts has made the system very appealing from building
devices and experimental points of view [2,3]. One of the
remarkable discoveries in graphene is the anomalous 2D
quantized Hall effect. A variety of rich physics and anoma-
lous phenomena are tied to a remarkable ‘‘relativisticlike’’
spectrum that electron and holes possess in graphene [4,5].
This has made graphene important and interesting from
several points of view in physics.

In the present Letter, we investigate the effect of a
uniform electric field, applied along the graphene sheet,
on its already anomalous Landau level spectrum. We find
that, within the low energy approximation near the Fermi
surface (Dirac points), the problem can be exactly solved.
We find strikingly new effects of electric field on the
Landau levels which is different from the Landau levels
of standard 2D electron gas.

We find that the Landau spectrum gets scaled, for a given
ky quantum number, by an electric field dependent dimen-
sionless parameter (� � E

vFB
). As the value of this parame-

ter is increased, spacings between the Landau levels
decrease. This Landau level contraction is a consequence
of electric field induced quantum mechanical mixing of
Landau levels. The entire Landau level structure collapses
at a critical value of this parameter. Further, the ‘‘relativ-
istic’’ character of the spectrum (with Fermi velocity re-
placing the velocity of light), leads to a novel interpretation
of our result in terms of relativistic boosts and the mixing
of electric and magnetic fields in moving frames of refer-
ence. We confirm our analytical result by solving the full
tight binding model for a graphene sheet in the presence of
magnetic and electric fields numerically. The collapse seen
in the low energy approximation, is indeed accelerated in
the actual tight binding model.

The modified wave functions and energy spectrum will
have implications on the nature of quantum Hall break-
down. We briefly touch upon this issue at the end, and point

out how it could be different from the standard quantum
Hall breakdown.

Electronic states of graphene are well described by the
tight binding Hamiltonian for the � electrons of the carbon
atoms. In graphene, the carbon atoms form a triangular
lattice with a basis of two geometrically inequivalent atoms
placed a=

���
3
p

apart, where a � 2:456A0 is the lattice con-
stant. The overlap integral between the nearest carbon
atoms is t � 2:71 eV. We denote the triangular lattice sites
by Ri � i1ê1 � i2ê2, where ê1 � x̂ and ê2 � �

1
2 x̂�

�
���
3
p
=2�ŷ are the basis vectors. cir� (r � 1, 2, and

� � " , # ) represent the electron annihilation operators
with sublattice index r and spin index � at Ri. The
Hamiltonian is then written as

 H � �t
X
i�

cyi2��ci1� � ci�ê21� � ci�ê31�� � H:c:; (1)

where ê3 � ��ê1 � ê2�. The electronic dispersion for gra-
phene has two points in a Brillouin zone which separate the
positive and negative energy eigenstates. These so-called
Dirac points are K1;2 � �

2�
a ��1=

���
3
p
�x̂� ŷ	. The disper-

sion relation in the proximity of the Dirac points is linearly
proportional to jkj. The low energy modes around these
points are described by slowly varying fields  r���Ri�

defined as

 cir� � eiK1
Ri�zrr0 r01��Ri� � e
iK2
Ri�xrr0 r02��Ri� (2)

where �x, �y are the Pauli matrices. The effective
Hamiltonian for the low energy modes is the Dirac
Hamiltonian.

 H � vF
Z
d2x

X
��

�y���:p���; (3)

where vF � �
���
3
p
=2� at

@
is the Fermi velocity. ��� are two

component field operators where � �� 1; 2� is the valley
index, corresponds to two Dirac points and � �� "; #� is
the spin index. The spectrum can be obtained by solving
the one particle equation to get the linear dispersion,
��k� � �@vFjkj. In the presence of an external magnetic
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field perpendicular to the graphene plane the one particle
Hamiltonian, h � vF� 
�, where � � p� eA, The en-
ergy eigenvalues are

 �n;ky � sgn�n�
���������
2jnj

p @vF
lc

(4)

n is the Landau level index, ky �
2�
Ly
l is the quantum

number corresponding to translation symmetry along
y axis, both n and l are integers [we choose Landau gauge
A�r� � xBŷ] and lc �

�����������
@=eB

p
is the magnetic length.

Unlike the case of the nonrelativistic electron in a magnetic
field, where the spectrum has a linear dependence on the
magnetic field and the non-negative integer valued Landau
level index, the graphene Landau levels have a square root
dependence on both magnetic field and Landau level index.
The degeneracy of each level is given by the number of
magnetic flux quanta passing through the sample. The
eigenfunctions are

  nky�x; y� / e
ikyy

sgn�n��jnj�1���
i�jnj���

� �
(5)

where �n��� are the harmonic oscillator eigenfunctions
and � � 1

lc
�x� l2cky�.

We now consider the above system in the presence of a
constant electric field in the x direction. The single particle
Hamiltonian is then given by

 h � vF� 
�� 1eEx: (6)

The Lorentz covariant structure of the Hamiltonian, with
vF playing the role of the speed of light, can be used to
solve it exactly [6]. It is known from special relativity, if
vFB > jEj, then we can always boost to a frame of refer-
ence where the electric field vanishes and the magnetic
field is reduced. We can then use the solution in Eq. (4) and
boost back to get the exact spectrum of the Hamiltonian in
Eq. (6). Here the boost transformation amounts to doing a
transformation on the space-time coordinate system. To
implement the above procedure, it is convenient to work
with the manifestly covariant time dependent Dirac equa-
tion,

 i@	

�
@
 � i

e
@
A


�
��x
� � 0 (7)

where x0 � vFt, x1 � x, x2 � y, 	0 � �z, 	1 � i�y,
	2 � �i�x, @
 �

@
@x
 . A0 � �, the scalar potential, A1 �

Ax, A2 � Ay, and ��x
� is a two component spinor. We
now apply a Lorentz boost in the y direction (perpendicular
to the electric field),

 

~x0

~x2

� �
�

cosh� sinh�
sinh� cosh�

� �
x0

x2

� �
(8)

and ~x1 � x1. The wave function transforms, ~��~x
� �
e��=2��y��x
�. Applying the above transformations and
choosing tanh� � E

vFB
� �, we can rewrite the Dirac equa-

tion in Eq. (7),

 

�
	0 ~@0 � 	1 ~@1 � 	2

�
~@2 �

i

l2c

���������������
1� �2

q
~x1

��
~��~x
� � 0:

(9)

In the boosted coordinates, where j�j< 1, it is a prob-

lem of a Dirac electron in a (reduced) magnetic field, ~B �

B
���������������
1� �2

p
. The time component of the 3-momentum in the

boosted frame, ~�n;~ky � sgn�n�
���������
2jnj

p
@vF
lc
�1� �2�1=4 is not

the physical energy eigenvalue of our problem. We have to
apply the inverse boost transformation to obtain the spec-
trum and eigenfunctions of our problem,

 �n;ky � sgn�n�
���������
2jnj

p @vF
lc
�1� �2�3=4 � @vF�ky; (10)

 

�n;ky�x; y� / e
ikyye���=2��y

sgn�n��jnj�1��0�
i�jnj��

0�

� �
; (11)

 �0 �
�1� �2�1=4

lc

�
x� l2cky � sgn�n�

���������
2jnj

p
lc�

�1� �2�1=4

�
: (12)

The energy eigenvalues of the standard 2D electron gas
in crossed magnetic and electric fields are given by �n;ky �
�n� 1

2�@!c � @ky
E
B�

m
2 �

E
B�

2. The main difference between
the two besides the

���
n
p

and
����
B
p

dependence, is that the low
lying graphene Landau level spacing scales as �1� �2�3=4,
whereas the spacing is independent of the electric field in
the nonrelativistic case. Comparing the eigenfunctions
with and without the electric field (5) and (11), we see
that the effect of the electric field is to (un)squeeze the
oscillator states as well as to mix the particle and hole wave
functions. Squeezing corresponds to the change in lc and
the eigenfunctions in Eq. (11) can be expanded as super-
position of states in Eq. (5). Thus, unlike in the usual
semiconductor samples, in graphene the electric field
causes Landau level mixing. Also notice in (12) that the
location of the Gaussian also shifts as a function of the
Landau level index n, unlike the standard 2D electron gas.

As � approaches unity, from Eq. (12) we infer that, to
keep the Gaussian shifts within the linear extent of the
system requires larger values of ky, which takes us beyond
the long wavelength approximation. Moreover the Eq. (10)
hands a collapse of the Landau level spectrum at � � 1.
One may wonder if the collapse we have found is an
artifact of the low energy approximation? Interestingly,
we find that in our full tight binding calculation the col-
lapse persists, and in fact it occurs at a value of � even
smaller than unity.

We have performed extensive numerical computations
on the tight binding model for graphene with magnetic and
electric fields, using lattice sizes ranging from 60� 60 to
600� 600. The magnetic field enters through the Peierls

substitution, t! tei�2�e=@�
R

A
dl in Eq. (1). A�r� is chosen
in such a way that the contribution to the phase term comes
from hopping along one of the three bonds for each carbon
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atom. This enables us to maintain translation symmetry
along the ê2 axis of the triangular lattice. The problem then
reduces to the 1D Harper equation.

 ��1;n1
� 2t cos

�
k2a� n1’

2

�
�2;n1

� t�2;n1�1;

��2;n1
� 2t cos

�
k2a� n1’

2

�
�1;n1

� t�1;n1�1:

(13)

Here’ is the magnetic flux passing through each plaquette,
k2 is the wave vector, and n1 is the ê1 component of
triangular lattice coordinate.

We choose the value of the magnetic field such that L
lc  a, where L is the linear extent of the system. The
condition lc  a ensures that we stay away from the
Hofstadter butterfly kind of commensurability effects on
the spectrum, and L lc ensures that a large number of
cyclotron orbits fit in the sample. For our numerics, we
expressed all energies in units of t and all lengths in units
of a.

Figure 1 shows the results of our numerical investigation
for zero and Fig. 2 for a finite (� � 0:1) electric field.
Figure 1 shows the spectrum at low energies and the
eigenvalues that are constant with respect to ky are the
Landau levels. They have

���
n
p

behavior and are in excellent
agreement with the analytical result and the eigenstates
that vary with ky are the chiral edge states responsible for
the quantum Hall current. In our numerics the lattice has
zigzag edges at the two ends along ê1. It is well known that
the zigzag edges result in zero-eigenvalue states even in the
absence of external magnetic field [7]. These zero-
eigenvalues surface states which are localized at the

boundary and n � 0 Landau level forms degenerate set
of states as shown in Fig. 1. However, Fig. 2 shows that this
degeneracy gets lifted in the presence of an electric field.
For small electric fields the wave function of these edge
states continues to be localized near the edge of the sample.
Any difference in eigenvalues of these surface states is
because of the potential seen by them due to the externally
applied electric field at the two edges of the sample. A
characteristic feature of these edge states is that they do not
vary with the wave vector, whereas the Landau levels
develop a linear ky dependence with electric field.

Figure 3(b), shows
���
n
p

scaling of Landau levels for a
given ky value. For zero electric field we see an excellent
match between analytics and numerics. And for the case of
finite electric fields we see a systematic deviation from
exact results as we suspected from our exact result. As
�! 1, the tight binding results shows a faster collapse.
Figure 3(a) shows the collapse has already occurred at � �
0:9, near one the Dirac points.

We show below that one of the consequences of the
Landau level contraction (10) and the n dependent
Gaussian shift (12) is the possibility of a ‘‘dielectric break-
down,’’ which is different from the conventional ones. The
single particle spectrum and states we have obtained thus
far (for a given E and B) can be used to construct stable
many-body quantum Hall ground states. However, the
external electric field not only modifies the single particle
wave function and spectrum, but can also destabilize the
ground state through spontaneous creation of particle-hole
pairs, i.e., by a dielectric breakdown. We present a simple
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FIG. 1 (color online). Energy eigenvalues �n;ky , for electrons in
graphene computed from the tight binding model for a hexagonal
lattice subjected to a magnetic field B � 27:3 T (or lc � 20a
where a is the triangular lattice spacing) for a system size of
600a� 600a. The plot shows �n;ky in the units of t as function of
ky, where ky is the wave vector in the y direction. Two sets of
horizontal lines are Landau levels corresponding to the two
valleys and n � 0 Landau level and the edge states are degen-
erate.
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FIG. 2 (color online). Energy eigenvalues �n;ky for electrons
computed for the tight binding model for parameters given in
Fig. 1 and an external electric field E applied along x axis, given
by the parameter � � E

vFB
� 0:1. The electric field gives a linear

ky dependence to the bulk Landau levels whereas it gives a
constant shift to the edge states. The part of solid line labeled
‘‘bulk Landau level’’ are n � 0 Landau levels and parallel lines
above and below them are Landau levels corresponding to
positive and negative n respectively. Set of points parallel to
ky labeled ‘‘edge states’’ are surface states localized at the zigzag
boundary.
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formula for dielectric breakdown, without giving full de-
tails. It has an unusual dependence on the length scale over
which the potential fluctuates and on the Landau level
index n. This peculiar feature is absent in standard quan-
tum 2D electron systems [8]. Specifically, we find that for
slowly varying electric field fluctuations over a length scale
‘E and for large Landau level index, the critical voltage for
breakdown is given by

 Vc �
�n�0; B�

e

�
1� �n

�
lc
‘E

�
2
�
; (14)

where � is a constant of the order of unity, which depends
on the strength of the electric field fluctuations and �n is
gap between levels n and n� 1. This means that if we have
an electric field, nonuniform over a nanoscopic scale (‘E �
lc), it will cause local breakdown even before the critical
field is reached. Such situations can be created through in-
plane or out-of-plane charged impurities or STM tips, in
addition to external electric fields. It is interesting that such
an anomalous local breakdown is Landau level index n
dependent, we expect that the quantum Hall breakdown
should be qualitatively different for n � 0 and n � 0
within graphene.

In the light of new spectroscopic experiments [9], we
claim that the contraction in Landau level spacing and the
collapse can be observed at fields attainable in laboratories.
The gap between n � 0 and n � 1 for B� 1 T is
�35 meV, for E� 3� 105 V m�1, 10% reduction in the
gap is expected. And the collapse of the Landau levels
should also be observable by applying E� 106 V m�1. In
the context of quantum Hall breakdown, the dependence of
critical voltage on ‘E as given in Eq. (14) suggests that the

breakdown phenomena should be different from what we
observe in standard 2D quantum Hall system. Moreover
graphene’s Landau level index dependence on Vc, we
expect the breakdown phenomena is going to be different
for n � 0 from that of n � 0.

It will be interesting to study graphene from the point of
view of the present Letter. As quantum Hall phenomena are
beginning to be seen in pyrolytic graphite [10] and possibly
in carbon eggshells [11], it will be very interesting to study
electric field effects in these systems as well, to confirm our
predictions.

In summary, we have made a theoretical prediction of a
remarkable phenomena in graphene: Landau level contrac-
tion and an eventual collapse, induced by crossed electric
fields. The local dielectric breakdown has a peculiar length
and Landau level index dependence. These phenomena,
not known in the standard 2D electron gas, is a conse-
quence of the relativistic type spectrum of low energy
electrons and holes in graphene.
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FIG. 3 (color online). (a) shows the energy eigenvalues around
the Dirac point plotted as function of ky for � � 0:9. The
collapse can be clearly seen (b) shows the modulus of the
eigenvalues j�n;ky j for a value of ky � 2:785 computed from
the tight binding model for system size 600a� 600a, magnetic
field B � 27:3 T or lc � 20a, electric field given by parameter
� � 0:0, 0.5, 0.9, plotted as a function of n.
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