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We present the first rigorous example of the Hubbard model in any dimension which exhibits metallic
ferromagnetism. The model is a genuine Hubbard model with short-range hopping and on-site Coulomb
repulsion, and has many single-electron bands. In the limit where the band gap and the Coulomb repulsion
become infinite, we prove that the ground states are completely ferromagnetic and at the same time
conducting.
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It has been believed since Heisenberg [1] that ferromag-
netism observed in nature is generated by quantum effects
and the Coulomb interaction between electrons. It is a
challenging problem to confirm this scenario by showing
that only short-range hopping of electrons and spin-
independent Coulomb interaction can lead to ferromagne-
tism in the concrete setting of the Hubbard model [2].

Now many rigorous examples of ferromagnetism (or
ferrimagnetism [3]) in the Hubbard model are known,
and it is clear that certain versions of the model do generate
ferromagnetism. An important class of examples, now
called flatband ferromagnetism, was discovered by
Mielke [4] and then by Tasaki [5]. In these models elec-
trons occupy the lowest dispersionless band, and an infini-
tesimally small Coulomb interaction can lead to a complete
ferromagnetism. Related models were found in [6].
Although the flatband models are singular in the sense
that the single-electron ground states have huge degener-
acy, the mechanism which generates ferromagnetism is
believed to be robust and physically realistic. Indeed the
existence of ferromagnetism has been proved rigorously in
related nonsingular models [7,8].

A common feature of all these rigorous examples of
ferromagnetism is that they describe insulators [9].
Metallic ferromagnetism, in which same electrons contrib-
ute both to magnetism and conduction, is clearly more
interesting and challenging. As far as we know the only
rigorous example of metallic ferromagnetism in the
Hubbard model is that by Tanaka and Idogaki [10], who
treated a quasi–one-dimensional model using the Perron-
Frobenius argument [2]. But the physics of one-
dimensional electron systems is very special, and it is
highly desirable to have examples in higher dimensions.

In this Letter, we present the first rigorous example of
metallic ferromagnetism in a version of the Hubbard model
in any dimension. The mechanism of ferromagnetism in
the present model is basically the same as that in the
previous models, namely, when one represents the system
using a moderately localized basis, the Coulomb repulsion
(in real space) generates both a repulsive interaction and a

ferromagnetic exchange interaction. Our model is a variant
of the models in [5–7] and has multi–single-electron
bands, among which the lowest two mainly contribute to
low energy physics (especially in the large band gap limit
that we take). In the ground states the lowest band is half
filled and exhibits ferromagnetism as in [5–7]. The elec-
trons in the second lowest band, which is partially filled,
are movable and are coupled ferromagnetically to the
electrons in the lowest band. This gives rise to ground
states which are ferromagnetic and at the same time
conducting.

Although the basic mechanisms are similar, the mathe-
matical methods developed for the insulating models [5–7]
never apply to conducting systems [11]. We here develop a
completely different variational argument.

Definitions and main results.—Let � be the
d-dimensional L� � � � � L hypercubic lattice (where L
is even) with unit lattice spacing and periodic boundary
conditions. Let N � f�12 ; 0; . . . ; 0�; . . . ; �0; . . . ; 0; 1

2�g be the
set of d vectors of length 1

2 pointing in the positive direction
of each axis. Then B � fx� �jx 2 �; � 2N g can be
regarded as the set of midpoints of bonds in �. We con-
struct a Hubbard model on the lattice ~� � �� f1; 2; 3g [
B� f1; 2g (where the triplicated lattice �� f1; 2; 3g con-
sists of pairs (x, i) with x 2 � and i � 1, 2, 3, and the
duplicated lattice B� f1; 2g consists of pairs (w, i) with
w 2 B and i � 1, 2). See Fig. 1. With each site z 2 ~� and
spin index � �" , # , we associate the standard fermion
operator cz;�.

It is convenient to define some fermion operators by
combining the basic operator cz;�. For each x 2 �, � 2
N , i � 1, 2, and � �" , # , we define
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FIG. 1. The lattice ~� for d � 1. Integer sites are triplicated,
and half-odd-integer sites are duplicated.
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fc�x��;i�;� � ��1�ic�x��;i�;�g
�
; (1)

 bx;� �
1���
2
p fc�x;1�;� � c�x;2�;�g; (2)

 dx;� � c�x;1�;� � c�x;2�;� � 2c�x;3�;�; (3)

 d�x��;i�;� � c�x��;i�;� � �fc�x;3�;� � ��1�ic�x�2�;3�;�g; (4)

where � > 0 is a model parameter whose value does not
play essential roles in the present Letter. See Fig. 2. These
operators are designed in such a way that any electronic
state on ~� can be written by a combination of a, b, and d
operators. Moreover one has fay; bg � fay; dg � fby; dg �
0 for any combinations of indices, and fayx;�; ay;�g �
fbyx;�; by;�g � �x;y��;� for any x, y 2 � and �, � �" , # .
Note that, unlike in our previous models [5,7], the a
operators satisfy the standard canonical anticommutation
relations.

We define Hamiltonian H by
 

H �
X

x;y2�;jx�yj�1
��";#

��sayx;�ay;� � tb
y
x;�by;��

� u
�X
x2�
��";#

dyx;�dx;� �
X

w2B;i�1;2
��";#

dy
�w;i�;�d�w;i�;�

�

� v
X
x2�
��";#

byx;�bx;� �U
X
z2~�

nz;"nz;#; (5)

with nz;� � cyz;�cz;�. Note that (5) defines a genuine
Hubbard model with short ranged (but admittedly com-
plicated) hopping amplitudes. The model has several
bands; the a band with the dispersion relation �a�k� �
�2s

Pd
i�1 cos�ki�, the b band with �b�k� � v�

2t
Pd
i�1 cos�ki�, and the d bands with higher energies. We

fix the total electron number to Ne.
Theorem.—Let d � 1; 2; 3; . . . be arbitrary and suppose

that j�j � Ne � 2j�j [12] and v > 2d�jsj � 2jtj�. In the
limit u, U ! 1 [13], the ground states of (5) exhibit

saturated ferromagnetism in the sense that they have the
maximum possible total spin Stot � Ne=2.

One may replace the lower bound for v by better values
which depend on the electron number. For example, it is
enough to have v > 2d�jsj � jtj� when 3j�j=2<Ne �
2j�j.

The electron number Ne � j�j corresponds to the half-
filling of the lowest a band, and Ne � 2j�j to the half-
filling of both the a and b bands. Therefore when t � 0 and
the electron number satisfies j�j<Ne < 2j�j, the ferro-
magnetic ground states, which are indeed Slater determi-
nant states, are conducting states withNe � j�j conducting
electrons (or 2j�j � Ne holes) in the b band.

Finite energy states.—We shall describe a complete
proof of the theorem. We say that � is a finite energy state
if h�; H�i<1 in the limit u, U ! 1. A finite energy
state cannot contain any of the d states since a d electron
costs an energy proportional to u, which becomes infinite.
Furthermore since U ! 1, a finite energy state � must
satisfy for any z 2 ~� the condition nz;"nz;#� � 0 and
hence

 cz;#cz;"� � 0: (6)

Let �0 be the state with no electrons. A computation
shows that c�x;3�;#c�x;3�;"�� � ��a

y
x;"a

y
x;#�0 � �3� 4d�2��1�

�� � ���0, where �� � �� is an arbitrary product of ay and by

except for ayx;", a
y
x;#. This means that any state � which

contains a term with ayx;"a
y
x;# cannot satisfy c�x;3�;#c�x;3�;"� �

0. Thus a finite energy state � has no terms with ayx;"a
y
x;#.

Likewise [14] we can show that � has no terms with
byx;"b

y
x;#. Therefore any finite energy state is in the subspace

H HC with the ‘‘hard core condition,’’ which is spanned by
the basis states

 ��A;�;B;�� �
�Y
x2A

ayx;��x�

��Y
x2B

byx;��x�

�
�0; (7)

where A, B are arbitrary subsets of � such that jAj � jBj �
Ne, and � � 	��x�
x2A, � � 	��x�
x2B are arbitrary spin
configurations with ��x�; ��x� 2 f"; #g [15].

For a state � to satisfy (6), it is not enough that � 2
H HC. By imposing (6) for other sites, we find that a finite
energy state � must satisfy the following local ferromag-
netic conditions. When we expand � as

 � �
X

A;�;B;�

 �A;�;B; ����A;�;B; ��; (8)

the coefficients  �A;�;B;�� must satisfy  �A;�;B; �� �
 �A;�x$y;B; �� for any x, y 2 A such that jx� yj � 1,
and  �A;�;B; �� �  �A;�x;B; �x� for any x 2 A \ B.
Here �x$y is the configuration obtained from � by switch-
ing ��x� and ��y� in �. Similarly �x, �x are obtained by
switching ��x� and ��x� in �, � [16]. These conditions are
equivalent to infinitely large ferromagnetic couplings be-
tween neighboring a electrons, and between the a electron
and the b electron sharing a same site x.
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FIG. 2. Components of the states corresponding to the special
fermion operators indexed by x 2 � and w 2 B. We omitted the
normalization factors for the a and b operators. Each state is
localized within the unit lattice spacing.
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By H LF we denote the subspace of H HC consisting of
states which satisfy the local ferromagnetic conditions.
Note that for any � 2H LF the expectation value of H
satisfies h�; H�i � h�; Heff�i with

 Heff �
X
x;y;�

��sayx;�ay;� � tb
y
x;�by;�� � v

X
x;�

byx;�bx;�: (9)

Variational estimates.—So far all of the arguments are
straightforward variations of those developed for the sim-
ple flatband models [5]. Let us now turn to variational
estimates, which are essential to our treatment of conduct-
ing states.

Note that the above stated local ferromagnetic condi-
tions relate the coefficients  �A;�;B;�� with common A
and B. We can thus decompose H LF into a direct sum as
H LF �

Lj�j
Na�Ne�j�j

H LF
Na

. Here H LF
Na

is the intersection
of H LF and the space spanned by the basis states
��A;�;B; �� with any A such that jAj � Na, and arbitrary
�, B, and �. Since the effective Hamiltonian (9) leaves the
number of a electrons invariant, we can determine the
ground state energy EGS variationally as

 E�Na� � inf
�2HLF

Na
k�k�1

h�; Heff�i; EGS � min
Na

Ne�j�j�Na�j�j

E�Na�:

(10)

When Na � j�j, a electrons fill the entire �, and are
coupled ferromagnetically. Since all b electrons are
coupled ferromagnetically to the a electrons, we see that
any state in H LF

j�j has the maximum possible total spin
Stot � Ne=2. It is also easy to see that E�j�j� gives the
lowest energy among the ferromagnetic states. In what
follows, we shall prove that E�Na�>E�j�j� for any Na <
j�j. This shows that the ground states have the maximum
total spin, and proves our theorem.

Let Na < j�j. We first note that on the space H LF
Na

,

 Heff � ~H � �Ne � Na�v� 2djsj�j�j � Na�; (11)

where

 

~H � �t
X

x;y2�;jx�yj�1
��";#

byx;�by;�: (12)

To get the lower bound (11), we noted that each hole (i.e., a
site in � not occupied by an a electron) has a kinetic
energy not less than �2djsj [17].

Since ~H does not act on a electrons, we have

 inf
�2HLF

Na
k�k�1

h�; ~H�i � min
A��
jAj�Na

inf
�2HLF

A
k�k�1

h�; ~H�i; (13)

where H LF
A is the intersection of H LF and the space

spanned by the basis states ��A;�;B;��with the specified
A and arbitrary �, B, and �.

Note that, on H LF
A (even on H HC), we can bound ~H as

 

~H � ~HA � 2djtj�j�j � jAj�; (14)

for any A � �, where

 

~H A � �t
X

x;y2A;jx�yj�1
��";#

byx;�by;� (15)

is the hopping Hamiltonian restricted on A. To get the
lower bound (14), we applied the bound j

P
��b

y
x;�by;� �

H:c:�j � 1 (which is valid on H HC) to all the hopping
terms including any site in �nA. From (10), (11), (13), and
(14), we have
 

E�Na� � �Ne � j�j�v� �j�j � Na�fv� 2d�jsj � jtj�g

� min
A��
jAj�Na

inf
�2HLF

A
k�k�1

h�; ~HA�i: (16)

We shall examine the infimum in (16). Let us decom-
pose A into connected components as A �

Sn
i�1

~Ai. Within
each ~Ai, all the a electrons and b electrons are coupled to
have the maximum possible total spin because of the local
ferromagnetic conditions. Note that ~HA allows b electrons
to hop around only within each connected component ~Ai,
and leaves those b electrons on �nA unaffected. This
means that the above ferromagnetic coupling is not dis-
turbed by the application of ~HA. Therefore the infimum of
the expectation value of ~HA taken over all states in H LF

A
can be estimated simply in the subspace spanned by up-
spin electrons [18]. At this stage we can forget about the
a electrons, which have no kinetic energies in ~HA, and
consider only the (now fully polarized) b electrons. This
leads us to

 inf
�2HLF

A
k�k�1

h�; ~HA�i � inf
�2 ~H "

�;Ne�jAj
k�k�1

h�; ~HA�i; (17)

where ~H
"
�;N is the space spanned by states of the form

�
Q
x2Bb

y
x;"��0 with an arbitrary B � � such that jBj � N.

An inspection shows that, in the space ~H
"
�;Ne�jAj, the

number of movable electrons (which are on A, and hence
acted on by ~HA) varies from Nmin � Ne � j�j to Nmax �
minfjAj; Ne � jAjg.

Since unmovable electrons (which are on �nA)
are not affected by ~HA at all, we see that
h�
Q
x2Bb

y
x;"��0; ~HA�

Q
x2B0b

y
x;"��0i�0 whenever jA\Bj�

jA\B0j. Therefore we can evaluate the infimum in the
right-hand side of (17) in each subspace with a fixed
number of movable electrons. Since unmovable electrons
have no contributions to expectation values of ~HA, we have

 inf
�2 ~H "

�;Ne�jAj
k�k�1

h�; ~HA�i � min
N

Nmin�N�Nmax

inf
�2 ~H "

A;N
k�k�1

h�; ~HA�i; (18)

where ~H
"
A;N is the space spanned by states of the form

�
Q
x2Bb

y
x;"��0 with an arbitrary B � A such that jBj � N.

Let ~H� be the hopping Hamiltonian (15) with A � �.
Since ~H� and ~HA are equivalent when restricted to the

subspace ~H
"
A;N , we see that
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 inf
�2 ~H "

A;N
k�k�1

h�; ~HA�i � inf
�2 ~H "

A;N
k�k�1

h�; ~H��i � inf
�2 ~H "

�;N
k�k�1

h�; ~H��i;

(19)

where the inequality follows from ~H
"
A;N �

~H
"
�;N . We

then find, from (17)–(19), that

 inf
�2HLF

A
k�k�1

h�; ~HA�i � min
N

Nmin�N�Nmax

inf
�2 ~H "

�;N
k�k�1

h�; ~H��i: (20)

Let �1 � �2 � � � � � �j�j be the single-electron eigen-
values of the hopping Hamiltonian ~H�, which is (15) with
A � �, in ascending order. Since the energy spectrum has
a plus-minus symmetry, we see that �‘ � 0 if ‘ � j�j=2
and �‘ � 0 if ‘ > j�j=2. The infimum in the right-hand
side of (20) is nothing but the ground state energy of a
spinless free fermion, and is equal to

PN
‘�1 �‘. By mini-

mizing this over N, we see that [19]

 	right-hand side of �20�
 � �j�j � jAj� ���
XNmin

l�1

�l; (21)

where �� is 0 if Nmin > j�j=2, and is �Nmin
if Nmin � j�j=2.

As for the lowest energy E��� of the ferromagnetic
states, one has

 E�j�j� � �Ne � j�j�v�
XNe�j�j

‘�1

�‘; (22)

since one simply fills all the a states and the lowest Ne �
j�j states of the b band with up-spin electrons to get the
lowest energy. Note that the total energy of the fully filled
a band is vanishing since there are no diagonal terms in the
hopping Hamiltonian of the a electrons.

Combining (16) and (20)–(22), we finally get

 E�Na� � E�j�j� � �j�j � jAj�fv� 2d�jsj � jtj� � ��g;

(23)

which implies the desired bound E�Na�>E�j�j� if Na <
j�j and v > 2d�jsj � jtj� � ��. Since �� � �2djtj, we get
the condition for v in the theorem. The improved condition
is obtained by recalling that �� � 0 if Nmin > j�j=2.

We wish to thank Teppei Sekizawa for useful discus-
sions which, after a few years, led us to an essential
observation. A. T. is supported by Grant-in-Aid for
Young Scientists (B) (18740243), from MEXT, Japan.

*Electronic address: akinori@ariake-nct.ac.jp
†Electronic address: hal.tasaki@gakushuin.ac.jp

[1] W. J. Heisenberg, Z. Phys. 49, 619 (1928).
[2] Reviews of rigorous results can be found in E. H. Lieb, in

Advances in Dynamical Systems and Quantum Physics
(World Scientific, Singapore, 1995), pp. 173–193; H.
Tasaki, Prog. Theor. Phys. 99, 489 (1998).

[3] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).

[4] A. Mielke, J. Phys. A 24, L73 (1991); 24, 3311 (1991); 25,
4335 (1992); Phys. Lett. A 174, 443 (1993).

[5] H. Tasaki, Phys. Rev. Lett. 69, 1608 (1992); A. Mielke and
H. Tasaki, Commun. Math. Phys. 158, 341 (1993).

[6] A. Tanaka and T. Idogaki, Physica (Amsterdam) 297A,
441 (2001); T. Sekizawa, J. Phys. A 36, 10451 (2003).

[7] H. Tasaki, Phys. Rev. Lett. 73, 1158 (1994); 75, 4678
(1995); J. Stat. Phys. 84, 535 (1996); Commun. Math.
Phys. 242, 445 (2003).

[8] A. Tanaka and H. Ueda, Phys. Rev. Lett. 90, 067204
(2003).

[9] The famous example by Y. Nagaoka, Phys. Rev. 147, 392
(1966) and D. J. Thouless, Proc. Phys. Soc. London 86,
893 (1965) can hardly be interpreted as a conducting
system since there is only a single carrier in the whole
system.

[10] A. Tanaka and T. Idogaki, J. Phys. A 32, 4883 (1999).
[11] The basic strategy was to decompose the total Hamilton H

into a sum of (mutually noncommuting) local
Hamiltonians as H �

P
hx, and to look for ground states

which minimize every local Hamiltonian hx. The resulting
ground states inevitably have small charge fluctuation, and
are hence insulating.

[12] By jSj we denote the number of elements in a set S.
[13] Although we believe that the theorem is valid for suffi-

ciently large but finite U and u for any L, the presently
available techniques are insufficient for proving this.

[14] Let ( � � � ) be an arbitrary product of ay and by for sites
other than x. Then we have c�x;1�;#c�x;1�;"�� � ��b

y
x;"b

y
x;#�0 �

�1=2��� � ���0, and
P
i�1;2c�x;i�;#c�x;i�;"�� � ��a

y
x;�b

y
x;"b

y
x;#�0 �

�� � ��ayx;��0. These show the claim.
[15] We order the sites in � in an arbitrary but a fixed manner.

Products are arranged according to this order.
[16] Let x, y 2 � with jx� yj � 1 and set w � �x� y�=2. If

( � � � ) is an arbitrary product of ay and by except for ayx;",
ayx;#, ayy;", ayy;#, we have c�w;2�;#c�w;2�;"�� � ��a

y
x;�a

y
y;��0 �

�2�3� 4d�2��1�� � ��f�";��#;� � �#;��";�g�0. This, when
applied to the expansion (8), yields the first condition
on  . Likewise, if ( � � � ) is an arbitrary product of ay

and by for sites other than x, we have
c�x;1�;#c�x;1�;"�� � ��a

y
x;�b

y
x;��0 � f2�3 � 4d�2�g�1=2�� � �� �

f�";��#;� � �#;��";�g�0, which leads to the second condi-
tion on  .

[17] S. Q. Shen, Z. M. Qiu, and G. S. Tian, Phys. Lett. A 178,
426 (1993).

[18] Let �" be any normalized state in H LF
A which consists

only of up-spin electrons. Let S�x � ayx;#ax;" � b
y
x;#bx;" and

S�i �
P
x2 ~Ai

S�x be the spin lowering operators. Define
S�n� �

Q
x2�nA�S

�
x �

nx
Qn
i�1�S

�
i �

ni with nx � 0, 1 and
ni � 0; 1; 2 . . . ; where n is a short hand for a collection
of these n’s, and define a normalized state �n �
�normlization�S�n��". Then the space H LF

A is spanned
by the states of the form �n. Since ~HA and S�n� commute,
h�n0 ; ~HA�ni equals h�"; ~HA�"i if n0 � n and is zero
otherwise. Thus the claim follows.

[19] Suppose that Nmin > j�j=2. Then since �‘ � 0 for ‘ �
Nmin, we see that the desired minimum is

PNmin

‘�1 �‘.
When Nmin � j�j=2, we can bound the minimum from
below by

PNmin

‘�1 �‘ � �Nmax � Nmin��Nmin
�
PNmin

‘�1 �‘ �
�j�j � jAj��Nmin

, where we used Nmin � Ne � j�j and
Nmax � Ne � jAj.

PRL 98, 116402 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
16 MARCH 2007

116402-4


