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The cross sections for single-electron photoionization in two-electron atoms show fluctuations which
decrease in amplitude when approaching the double-ionization threshold. Based on semiclassical closed
orbit theory, we show that the algebraic decay of the fluctuations can be characterized in terms of a
threshold law ¢ o« |E|* as E — 0_ with exponent u obtained as a combination of stability exponents of
the triple-collision singularity. It differs from Wannier’s exponent dominating double-ionization pro-
cesses. The details of the fluctuations are linked to a set of infinitely unstable classical orbits starting and
ending in the nonregularizable triple collision. The findings are compared with quantum calculations for a

model system, namely, collinear helium.
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Recent experimental progress has significantly im-
proved the energy resolutions of highly excited two-
electron states below [1,2] and above [3] the double-
ionization threshold E = 0. Near the threshold, electron-
electron correlation effects become dominant which are
directly observable in total and partial cross sections, see
[4-6] for recent reviews; an example is Wannier’s cele-
brated threshold law for double ionization [7] confirmed
experimentally in [8]. For £ <0, two-electron atoms ex-
hibit a rich resonance spectrum while the classical dynam-
ics of this three-body Coulomb problem becomes chaotic.
Approaching the double-ionization threshold from below
has thus proved challenging [6] and recent experimental
and theoretical efforts still only reach single-ionization
thresholds Iy with N = 15 [1,2,9]. Semiclassical methods
need to address the chaotic nature of the classical dynamics
which is dominated by the complex folding patterns of the
stable and unstable manifolds of the triple collision [10].
Because of the high dimensionality of the system semi-
classical applications have been restricted to subsets of the
full spectrum and again small N values [6].

In this Letter, we show that the fluctuations in the total
cross section for single-electron photoionization below the
three-particle breakup energy decay algebraically with an
exponent determined by the triple-collision singularity
different from Wannier’s exponent. Writing the cross sec-
tion in dipole approximation [11,12], we obtain

o(E) = —4mahowlm{D¢;|G(E)|D¢,), (1

where ¢; is the wave function of the initial state and D =
@ - (r; + r,) is the dipole operator with 17, the polarization
of the incoming photon and r;, the position of electron ;.
Furthermore, G(E) is the Green function of the system at
energy E = E; + how and a = ¢*/hc. Note that we work in
the infinite nucleus mass approximation, that is, the posi-
tion of the nucleus is fixed at the origin.
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By expressing the Green function semiclassically in
terms of classical trajectories, fluctuations in the cross
section of hydrogenlike atoms in external fields have
been analyzed successfully using closed orbit theory
(COT) [11,12]. In the semiclassical limit, the support of
the wave function ¢; shrinks to zero relative to the size of
the system reducing the integration in (1) to an evaluation
of the Green function at the origin. This is strictly valid
only for potentials sufficiently smooth at the origin; cor-
rections due to diffractive scattering at the central singu-
larity give additional contributions often treated in
quantum defect approximation [13,14]. The situation is
different for two-electron atoms where the dynamics near
the origin is dominated by the nonregularizable triple-
collision singularity. Closed orbit theory has been used to
analyze experimental photoabsorption spectra of helium
with and without external fields [13,15] for highly asym-
metric states; accompanying theoretical considerations
treat the system in a single-electron approximation thus
not considering the triple-collision dynamics which be-
comes important for doubly excited resonances.

In the following, we will discuss a COT treatment of
two-electron atoms explicitly including the triple-collision
dynamics when approaching the limit £ — O_. Intro-
ducing the hyper-radius R = (r? + r3)"/2, we fix R, such
that a surface % defined as R = R, encloses the support of
the initial state ¢;. The surface 3 naturally leads to a
partition of the configuration space into physically distinct
regions. In particular, quantum contributions to (1) from
the inner region are insensitive to the total energy.
Contributions from the outer region test the full scale of
the classically allowed region of size |E|™! and will be
responsible for the resonance structures near the double-
ionization threshold E = 0. Following Granger and Greene
[16], we write the photoionization cross section (1) in
terms of local scattering matrices, that is,
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o =4mahwRe[dT (1 — STSH7I(1 + S'SHd]  (2)

= 42 ahwRe{d[1 + 25" + 2(STsH)2 + .. .Jd}. (3)

Here, S' is a core-region scattering matrix which maps
amplitudes of waves coming in at X onto amplitudes of
the wave components going out at 3; it thus contains all the
information about the correlated two-electron dynamics
near the nucleus. Likewise, ST describes the wave dynamics
of the two-electron wave function emanating from and
returning to X and thus picks up long-range correlation
in the exterior of 3. Furthermore, d is the atomic dipole
vector, d,(E) = (VL(E)|D¢;), with W}(E) being the nth
linearly independent energy-normalized solution of the
Schrédinger equation inside 2 with incoming wave bound-
ary conditions at % [16]. This type of scattering formula-
tion was independently developed in [17] for general
surfaces 2; for a semiclassical formulation, see [18]. The
series expansion (3) was exploited in [13,14,19] in order to
include core-region scattering or quantum defect effects in
COT.

For the wave dynamics inside 3, the double-ionization
threshold £ = 0 is irrelevant and the core-region scattering
matrix S' as well as the dipole vector d vary smoothly
across E = 0; they can be regarded as constant for energies
sufficiently close to the threshold. The information about
the increasing number of overlapping resonances near the
threshold is thus largely contained in S'.

Semiclassical approximations for the quantities intro-
duced above are valid in the outer region R > R,. The
long-range scattering matrix, S', can thus be treated semi-
classically while d and S' demand a full quantum treat-
ment. The semiclassical representation of S' in position
space reads [16—18]

S'(x, x| E) =~ (27Tih)f(ffl)/ZZ|M12|j*l/zei(Sj/h)fi(*n'vj/Z),
J

“)

where the sum is taken over all classical paths j connecting
points x and x’ on X without crossing 2; S;(E) denotes the
action of that path, v; is the Maslov index, and f* = 4 is the
dimension of the system for fixed angular momentum.
Furthermore, |M12|;1/2 = |825j(x, x')/axox'|'/2, where
M, is a (3 X 3) submatrix of the 6-dim. Monodromy
matrix describing the linearized flow near a trajectory.
Note that due to the strong instability of the classical
dynamics near the triple collision, these matrix elements
become singular for triple-collision orbits (TCO) starting
from or falling into the triple collision R = 0. It is thus
important here that trajectories contributing to (4) start at a
fixed hyper-radius Ry, > 0 away from the triple collision
[20].

Making use of the scaling properties of the classical
dynamics, we introduce the transformation [21]

p = VIEIp:
L =L/VIEL

where F, p corresponds to coordinates and momenta at
fixed energy E = —1 and L is the total angular momen-
tum. Expressing L in scaled coordinates, we have L — 0
as E — 0 and can thus restrict the analysis to the 3 degrees
of freedom subspace L = 0 (for fixed L) [10].

In scaled coordinates, the inner region shrinks according
to Ry = |E|Ry — 0 for E— 0_, and the part of the dy-
namics contributing to S in (4) is formed by trajectories
starting and ending closer and closer to the triple collision
R =0as |E| « Ry — 0. TCOs only occur in the so-called
eZe space [10], a collinear subspace of the full three-body
dynamics where the two electrons are on opposite sides of
the nucleus [21]. As R, — 0, only orbits coming close to

s = S/VIEI

r =i/|El;

the eZe space can start and return to 2, and they will do so
in the vicinity of a closed triple-collision orbit (CTCO)
starting and ending exactly in the triple collision. The
dynamics in the eZe space is relatively simple as it is
conjectured to be fully chaotic with a complete binary
symbolic dynamics. In particular, for every finite binary
symbol string there is a CTCO, the shortest being the so-
called Wannier orbit (WO) of symmetric collinear electron
dynamics. Furthermore TCOs escape from or approach the
triple collision at R = 0 always symmetrically along the
ri = r, axis in the eZe space, that is, along the WO [22].
This universality will be exploited below when treating the
energy dependence of My, in (4).

Returning to the cross section (2), we write o = o +
o, where we identify the smooth contribution o, with the
leading term in the series expansion (3). The main contri-
bution to the fluctuating part of the cross section oy is
contained in ST which in semiclassical approximation (4)

can be expressed in terms of orbits returning to 3 once;
multiple traversals of 3, represented by (STSY)* with k = 2
will give subleading contributions in the semiclassical
limit £ — 0_ due to the unstable dynamics near the triple
collision. Furthermore, swarms of trajectories starting on 2,
and returning to 3 will do so close to the eZe subspace and
thus in the neighborhood of a CTCO with actions and
amplitudes approaching those of the CTCO trajectory as
Ry — 0. The fluctuating part can thus in leading order be
written in the form

on(E) =Re > A;(E)e’™Si (5)
CTCO;

with
AJE) = My (E); ' = [EPH1M R (©)

and z = 1/h4/|El. In (5), the sum is taken over all CTCO’s

j starting and ending at 3. Note that the stability M ,(R,)
in scaled coordinates depends on energy implicitly through
the scaled radius Ry(E) = |E|Ry. As E— 0_, M/, picks
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up additional contributions of parts of the CTCO closer and
closer to the triple collision. Asymptotically, all CTCOs
approach the triple collision along the WO and the con-
tributions to M, become orbit independent. The R depen-
dence for the Monodromy matrix of the WO can for small
R be obtained analytically [23] leading to

|M15(Ro)| o |Ry|72#%9/2 for Ry — 0 7

with exponent

1T [100Z -9 4Z -9
M= Meze + 2/-l“wr = 4|:\/ + 2\/ i| (8)

47 — 1 47 — 1

Thus, in unscaled coordinates, M, in (6) diverges which is
a direct consequence of the nonregularizability of the triple
collision acting as an infinitely unstable point in phase
space; details will be presented in [23]. The exponent u
in (8) is universal for all CTCOs and consists of two
components: .z, is related to the linearized dynamics in
the eZe space and w,, picks up contributions from two
equivalent expanding degrees of freedom orthogonal to the
eZe space in the so-called Wannier ridge (WR). The latter
is the invariant subspace of symmetric electron dynamics
with |ry| = |r,| at all times [21]. The fluctuations in the
photoionization cross section thus vanish in amplitude as
E — 0_ according to

oq(E) « |E|*Re Z ajeizsf, 9)
cfco;

where the rescaled amplitudes a; = |E|"#A; depend only
weakly on E. These amplitudes contain contributions from
the linearized dynamics along the orbit far from 3, as well
as information about the inner quantum region R < R, via
the dipole vector d and the core-region scattering matrix S*.
Furthermore, multiple traversals of 3, contained in (STS!)¥
with k = 2 in (3) approach the triple collision k times from
the semiclassical side and will thus contribute at lower
order with weights scaling at least as A;; ~ |E|**. The
exponent u in (8) is different from Wannier’s exponent

M, with
1 /100Z—-9 1
— 2 10
o =4\ az—1 4 (10)

One obtains, for example, u = 1.30589... compared to
M, = 1.05589... for helium; the WR contributes to the
decay for Z > 9/4 when u,, is real.

The exponent u can be interpreted in terms of stability
exponents of the triple-collision singularity. Using an ap-
propriate scaling of space and time by, for example, em-
ploying McGehee’s technique [22], the dynamics near the
singularity is dominated by two unstable fixed points in
scaled phase space, the double escape point (DEP) and the
triple-collision point (TCP). In unscaled coordinates, these
fixed points correspond to the WO at energy E = 0, that is,
the DEP is the trajectory of symmetric double escape while
the TCP corresponds to the symmetric triple collision and

is the time reversed of the DEP. The triple collision itself
can be mapped onto the classical dynamics at E = 0;
likewise, Ry = |E|R, acts as a parameter measuring the
closeness to the £ = 0 manifold which contains the fixed
points, see [10,22]. Most classical trajectories emerging
from 3 in the vicinity of the triple collision R = 0 will lead
to immediate ionization of one electron carrying away a
larger amount of kinetic energy. Only a fraction of orbits
starting on X, near the WO will enter a chaotic scattering
region; the WO at E < 0 thus acts as an unstable direction
of the DEP, Up°, with a stability exponent Ay . From there,
they can return to the triple-collision region and thus
approach the surface ¥ again along the WO, that is, along
the stable direction S7°. The transition from the DEP into
the chaotic scattering region and from this scattering re-
gion to the TCP is limited by the least stable eigendirec-
tions of the fixed points in each of the invariant subspaces
(eZe or WR) perpendicular to the WO.

Trajectories leaving 3, along the WO in the eZe space
diverge from the WO along an unstable direction U%/¢ with
a stability exponent )tf]ZDe. Competition of the instability in
U}y with that in U$ determines the fraction A2, of orbits
entering the chaotic scattering region. By using methods as
in [10,24], one finds that

eZe | yWO

~A ~
AL, Ry — R an

with exponent equal to Wannier’s exponent (10). For the
cross section (1), information about the phase space region
returning from the chaotic scattering region to the surface
>, along the WO is also needed. While approaching 2,
these orbits are deflected away from the triple collision
along an unstable direction U%%¢ of the TCP fixed point.

The fraction of orbits reaching the surface 2 among those
leaving the chaotic scattering region scales thus as in (11)
now with exponent Ag7¢/|A§°|. Similar mechanisms apply
for the WR dynamics.

The fraction A of two-electron trajectories making the
transition from 3 back to 3 can thus in the limit £ — 0_
be estimated in terms of the stability exponents of the fixed
points, also referred to as Siegel exponents [24] in celestial
mechanics. One obtains A o R(z)" with u as in (8) which
can be written as
1<A@ie+i?>. 1<A§; N A

wr
= =_ Ur ).
Meze D) A‘l;v](; |)\¥70| Mowr D) )l‘[N]Z |)\¥70|>’

for the actual values of the stability exponents A, see
[7,10]. The mean amplitude of the fluctuations in the
quantum signal is thus asymptotically related to the frac-
tion of phase space volume starting and ending at R,,.

A numerical study of the full three-body quantum prob-
lem is still out of reach for energies £ < Iy with N ~ 15
[1,9]; we therefore chose a model system, namely eZe
collinear helium which was first studied quantum mechani-
cally in [25]. We calculated the cross section (1) directly in
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|IFourier Transforml (arbitrary units)

Scaled action / 27t

FIG. 1 (color online). The Fourier spectrum of the fluctuating
part of the eZe cross section rescaled according to (12); the
circles denote the position § ; and (relative) size of |M ,2|j_1/ % for
CTCO’s with §/27 < 13. Corresponding trajectories in con-
figuration space are shown for the first 4 peaks. Inset: oy for
N = 52.

a large set of basis functions using the method of complex
rotation and obtained a converged signal for N ~ 55. Semi-
classically, we consider now the dynamics in the eZe space
alone, which contains all the important parts regarding the
algebraic decay in the fluctuations. The number of basis
functions used are scaled with energy to cover a fixed
scaled region in R containing CTCOs with §/27 = 20.
Adopting the basis functions used by Piittner et al. [1]
leading to a strongly banded Hamiltonian matrix, it is
possible to increase the basis size to 10°. Starting with an
odd initial state ¢b;, we obtain the cross section for the even
parity eZe spectrum; its fluctuating part after numerically
subtracting a smooth background is shown in Fig. 1. The
numerical value of the exponent w is determined by re-
scaling the signal according to

F(z) = |E|"*op(2)/hw 12)

and testing the stationarity of the Fourier transform of F(z)
in different energy windows [23]. The best value thus
obtained is p = 1.306 = 0.035 in good agreement with
the theoretical prediction (8). (Note that the real parts of
the exponents for 3-dim. helium and for eZe helium coin-
cide as Reu,,, = 0.) Furthermore, the peaks in the Fourier
transform can be associated one by one with CTCO’s in the
eZe system, see Fig. 1. We do not observe peaks associated
with the concatenation of different CTCQO’s or repetitions
of single CTCO’s. This is consistent with the expected
suppression of orbit contributions traversing 3, more than
once as discussed earlier. Furthermore, we calculated the
geometrical contribution to the coefficients a; in (9) di-
rectly from the matrix elements M, by scaling out the
leading order divergence; a clear correlation with the peak
heights can be seen in Fig. 1. Quantum contributions from
the core region are thus indeed roughly the same for all
CTCOs.

In conclusion, we show that the fluctuations in the total
photoionization cross section below the double-ionization
threshold follow an algebraic law with a novel exponent
which can be written in terms of stability exponents of the
triple collision. Our findings are verified numerically for a
collinear model systems; we furthermore predict that the
algebraic decay law is valid for the physically relevant 3
dimensional cases with an additional contribution from the
WR dynamics for Z > 9/4. Our findings will provide new
impetus for experimentalists and theoreticians alike to
study highly doubly excited states in two-electron atoms.
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