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Testing General Relativity with Atom Interferometry
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The unprecedented precision of atom interferometry will soon lead to laboratory tests of general
relativity to levels that will rival or exceed those reached by astrophysical observations. We propose such
an experiment that will initially test the equivalence principle to 1 part in 10'> (300 times better than the
current limit), and 1 part in 10!7 in the future. It will also probe general relativistic effects—such as the
nonlinear three-graviton coupling, the gravity of an atom’s kinetic energy, and the falling of light—to
several decimals. In contrast with astrophysical observations, laboratory tests can isolate these effects via
their different functional dependence on experimental variables.
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Experimental tests of general relativity (GR) have gone
through two major phases. The original tests of the peri-
helion precession and light bending were followed by a
golden era from 1960 until today (see, e.g., [1]). These
tests were in part motivated by alternatives to GR, such as
Brans-Dicke theory [2]. More recently, the cosmological
constant problem suggests that our understanding of grav-
ity is incomplete, motivating a number of proposals for
modifying GR at large distances [3]. Also, alternatives to
the dark matter hypothesis have led to theories where
gravity changes at slow accelerations or galactic scales [4].

Presently, most GR parameters have been tested at the
part per thousand level. Typical GR tests involve the study
of planets, stars, or light moving over astronomical dis-
tances for extended periods of time. In this Letter we argue
that high-precision tests of GR are possible in the lab us-
ing the motion of individual, quantum-mechanical atoms
moving over short distances for brief periods of time.
Specifically, atom interferometry can lead to laboratory
tests of GR that are competitive with astrophysical tests
and potentially superior to them in the long run. There are
two reasons for this: one is the high accuracy of atomic
physics methods—reaching, for example, 16-decimal
clock synchronization [5]. The second is that such an
experiment has several control parameters, allowing us to
isolate and measure individual relativistic terms and con-
trol backgrounds by using their scalings with these parame-
ters. In contrast, with astrophysical observations we have
limited control and often cannot disentangle the relativistic
effects.

Our proposed experiment relies on light-pulse atom
interferometers. These have already achieved extreme ac-
curacy as inertial sensors in a variety of configurations
including gyroscopes [6], gradiometers [7], and gravime-
ters [8]. The first generation of atom inteferometry experi-
ments will push the limits on the principle of equivalence
(PoE) and begin measuring GR effects and placing con-
straints on parametrized post-Newtonian (PPN) parame-
ters, as shown in the third column of Table I. The next three
columns show further possible improvements.
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To calculate the effect of GR corrections to Newtonian
gravity on an atom interferometer, we need the metric
governing the motion of the atoms and photons in the
experiment. Consider a Schwarzschild space-time in the
PPN expansion (h = ¢ = 1):

ds> = (1 +2¢ +2B¢>)dt* — (1 — 2y¢)dr* — r*dQ?,
(1
_GM

where ¢ = — =% is the Earth’s gravitational potential, and
B and y are PPN parameters. The major effect neglected
here is the rotation of the Earth. The Newtonian effects of
the rotation are an important background, but the possible
rotation related GR effects are undetectable in the inter-
ferometer configurations considered here.

Combining the geodesic equations for the spatial X' (i =
1, 2, 3) and 1, the coordinate acceleration of an atom in the

frame of Eq. (1) (with v = i—f) is
dv > . a2
T= Vb + (B + V@7 + 43 7P - 202V

+25(5 - Vo). )

This illustrates two classes of leading GR corrections to the
Newtonian force law. The V¢? terms are related to the
nonlinear (non-Abelian) nature of gravity indicating that
gravitational energy gravitates through a three-graviton
vertex. To see this, note the divergence of the gravitational
field given in Eq. (2) is nonzero because of these terms. Just
as for an electric field, a nonzero divergence of the gravi-
tational field implies a local source density—in this case, a
local energy density—proportional to that divergence V -
V¢? =2(Ve)>. So the local energy density is propor-
tional to the field squared. This energy gives rise to the
V¢? terms. The other terms are velocity-dependent forces
related to the gravitation of the atom’s kinetic energy. The
nonlinear GR corrections are smaller than Newtonian grav-
ity by a factor of ¢ ~7 X 107'° while the velocity-
dependent forces are smaller by v> ~ 10~ for the atom
velocities we are considering. We will show that the non-
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TABLE I. Experimental precision for measuring GR effects, PPN parameters, and principle of equivalence (PoE) violations. The
initial atom interferometer (Al) limits assume the 10 m experiment described in the text. The potential upgrade would implement
2007k LMT beam splitters. The future experiment assumes a 100 m interferometer. A possible improvement using Heisenberg

statistics is shown in the far future column. All precision values assume 10° s of integration.

Tested Effect Current limit Al initial Al upgrade Al future Al far future
PoE 3X1078 10715 10716 10717 107"
PPN (8, y) 1074-1073 107! 1072 1074 1076

linear terms can only be measured through a gradient of the
force produced and so are reduced by an additional factor

of }eo_:: ~ 1076 for a 10 m long experiment. Both effects

are then ~10~ g,

Experimental setup.—To measure these small acceler-
ations we consider first a one-dimensional gravimeter ar-
ranged to measure vertical accelerations with respect to
the Earth. In a ground-based atom interferometer gravime-
ter, a dilute ensemble of cold atoms is launched upward
with velocity v;. The atoms then follow trajectories in
accordance with Eq. (2). During their free fall, a se-
quence of laser pulses along the vertical direction serve
as beam splitters and mirrors by coherently transferring
photon recoil kicks of momentum 7k s to each atom [9].
For example, the laser pulse (gray) at ¢ = 0 in Fig. 1 acts as
a beam splitter, putting the atom in a superposition of
the initial velocity state (solid black line) and a state with
higher velocity (dashed black line). The resulting spa-
tial separation of the halves of the atom is proportional
to the interferometer’s acceleration sensitivity. We con-
sider the beam splitter-mirror-beam splitter (§ — 7 — %)
sequence [10] the simplest implementation of a gravime-
ter and the matter-wave analog of a Mach-Zender
interferometer.

To test GR, we propose a Rb interferometer with an
initial precision of ~10~!3g. This will be achieved with an
evaporatively cooled atom source, large momentum trans-
fer (LMT) beam splitters, and an L = 10 m tall vacuum
system for the atoms’ flight, allowing a long interrogation
time T = 1.34 s. To reduce technical noise, including laser
phase and vibrational noise, differential strategies similar
to those used in current gravity gradiometers will be em-
ployed. For example, to test the PoE, the differential ac-
celeration between 35Rb and ®’Rb can be measured in a
simultaneous dual species fountain [11].

Evaporatively cooled, rather than laser cooled, atomic
sources [12] should enable a significant performance im-
provement over the previous generation of sensors. First,
evaporatively cooled sources enable tighter control over
systematic errors related to the initial position and velocity
of the atomic ensemble. Second, evaporatively cooled
sources achieve temperatures (<1 wK) low enough to
implement LMT beam splitters, which are highly velocity
selective. Promising LMT beam splitter candidates include
optical lattice manipulations [13], sequences of Raman
pulses [14], and adiabatic passage methods [15]. Finally,
the low temperatures available with these sources eliminate

signal losses due to expansion of the ensemble over long
interferometer interrogation times.

Overall sensitivity is both a function of the effective
momentum transfer of the atom optics (fik.y) and the
signal-to-noise ratio (SNR) of the interference fringes.
Because of technical advances in implementation of nor-
malized detection methods for atomic clocks and sen-
sors [16], interference fringes can now be acquired with
high SNRs limited only by quantum projection noise (atom
shot noise) for ensembles of up to ~107 atoms. Using
107k(= hk.) LMT beam splitters, a ~107 atom evapora-
tively cooled source and an interrogation time of 7 =
1.34 s results in a sensitivity of 7 X 10~ 3g/Hz!/2, and
in a precision of ~10~!°g after a day of integration. This
estimate is based on realistic extrapolations from current
performance levels, which are at 107 1%g [17].

Interferometer phase shifts.—The total phase shift in the
interferometer is the sum of three parts: the propagation
phase, the laser interaction phase, and the final wave packet
separation phase [18]. The usual formulas for these must be
modified in GR to be coordinate invariants. Our calculation
will be discussed in greater detail in [19]. The space-time
paths of the atoms and lasers are geodesics of Eq. (1). The
propagation phase is

d)propagation = del = /mds, 3)

where L is the Lagrangian and the integral is along the

Height
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FIG. 1. A space-time diagram of a light-pulse atom interfer-
ometer. The black curves indicate the geodesic motion of a
single atom near the surface of the Earth. Laser light used to
manipulate the atom is incident from above (light gray) and
below (dark gray) and travels along null geodesics. The finite
speed of the light has been exaggerated.

111102-2



PRL 98, 111102 (2007)

PHYSICAL REVIEW LETTERS

week ending
16 MARCH 2007

atom’s geodesic. The separation phase is taken as
¢separation = [ﬁ,udx# ~ EAr — I% - AX, 4)

where, for coordinate independence, the integral is over the
null geodesic connecting the classical endpoints of the two
arms of the interferometer, and p is the average of the
classical 4-momenta of the two arms after the third pulse.
The laser phase shift due to interaction with the light is the
constant phase of the light along its null geodesic, which is
its phase at the time it leaves the laser. Corrections due to
the atomic wave function size Ax [20] and the laser pulse
time can be calculated nonrelativistically [21] but do not
affect the leading order GR signal.

In Table II we list some of the phase shifts that arise from
an analytic relativistic calculation. Effectively, the local
gravitational acceleration is expressed as a Taylor series in
the height above the Earth’s surface. The first phase shift in
Table II represents the effect of the leading order (constant)
piece of the local acceleration while the 2nd and 5th terms
are the next gradients in the Taylor series. Notice that even
the second gradient of the gravitational field is relevant for
this interferometer. The 3rd term arises from the second
order Doppler shift of the laser’s frequency as seen by the
moving atom. The 4th, 6th, 7th, and 8th terms arise only
from GR and are not present in a Newtonian calculation.
The 4th and 7th terms arise in part from the nonlinear
nature of gravity.

The 6th term receives contributions from the velocity-
dependent forces in Eq. (2), but its coefficient is indepen-
dent of . There are two canceling contributions to this
term coming from the y terms in the force law for the atom
and the photon. This term thus measures the effect of
gravity on light and the velocity-dependent force on the
atom. If we put a different parameter, §jjgy, in front of the
¢ in the component g, of the metric governing the motion
of the light, we would see this term as (4 + yigne + Viigne —
Yaom) ke € T>v? , where the y’s are the PPN parameters in
the metrics for the light and the atom. This term then tests a
matter-light principle of equivalence, namely, that they
both feel the same metric.

TABLE II. A partial phase shift list. The sizes of the terms
assume the initial design, sensitive to accelerations ~10"g.

Phase shift Size (rad) Interpretation

(@9 —kegrgT? 3% 108 gravity
2) —ke(9,8) v, -2 X 103 Ist gradient
3) — 3k T v, 4% 10" Doppler shift
4 2= 2B — VkergdT? 2% 107! GR

%) — ke (378)THv7 8 X 1073 2nd gradient
(6) —SkeygT?v? 3% 1076 GR

7N 2=2B— Ykyd, (gd)T?v,  2X107° GR Ist grad
8) — 12k’ TPy, —6 %1077 GR

Previous works on GR and interferometry [22] have not
dealt with a specific, viable experiment or a full relativistic
calculation. Important effects, such as the influence of
gravity on light, the corresponding changes to the separa-
tion and laser phases, and the nonlinearity of gravity were
not discussed. The typical perturbation theory calculation,
which integrates the linearized GR Lagrangian over the
unperturbed Newtonian trajectories, does not give the cor-
rect coefficients or even the dependence on PPN parame-
ters of the phase shifts in Table II. For example, the
aforementioned cancellation of the y’s in k. g7%v? would
be missed by such a calculation.

Measurement strategies.—To test GR, the relativistic
terms must be experimentally isolated from the total phase
shift. Many effects contribute to the total phase shift in-
cluding the Newtonian gravity of the nearby environment,
magnetic fields, and the Earth’s rotation. Many of these
effects will be much larger than the GR effects. We employ
magnetic shielding, a rotation servo to null Earth rate
during the interferometer interrogation time, and, if neces-
sary, strategically placed masses to “‘shim” the local grav-
ity field. The local field can also be characterized to high
precision using the conventional gravity response (1st term
in Table II) at shorter times 7.

To pick out the relevant terms, four different control
parameters can be used: k., vy, T, and R, the distance
from the center of the Earth. Also, with a different design,
the angle of the interferometer can be varied. These pa-
rameters can be varied by order 1, except for R which can
only be varied by ~107° in a ground-based experiment.
The different scalings of the relativistic terms with these
parameters allow many backgrounds to be rejected.

For example, the 6th term in Table 11, k.g7%v?, scales
differently with the control parameters than the back-
grounds and so can be directly measured. Practically, to
reduce systematics and technical noise, this would require
a differential measurement where clouds of atoms are
launched simultaneously with different velocities.

The largest GR term, k.;gT?¢, is more difficult to
measure. Its scalings with the three main control parame-
ters, ke, vy, and T allow most backgrounds to be ignored.
However, it must still be picked out of the Newtonian
background, k.;gT?. It originates in part from the V¢?
term in Eq. (2) and is thus due to the nonlinear nature of
gravity. Since it is impossible to have a force that scales as
# outside the mass distribution in the center of mass frame
in Newtonian gravity, the R scaling of this term may
provide a way to distinguish it from a Newtonian gravita-
tional field. A differential measurement of the R scaling
would involve two interferometers running simultaneously
at different heights. The same laser should be used for both
interferometers to reduce systematics and technical noise.
At best, such a differential setup would measure the gra-
dient of this term, thus reducing it to ~1077 rad or
~10~13g, if the interferometers are placed 10 m apart.

In practice, a measurement of this term or of the third
GR term, ked,(g#)T3v;, could be masked by the
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Newtonian gravity of local mass inhomogeneities. One
possible approach to rejecting the Newtonian background
is to employ three such differential accelerometer mea-
surements along three mutually orthogonal axes. If these
three measurements are added together, all Newtonian
gravity gradient contributions to the measurement must
cancel, since, in the absence of a local source, the diver-
gence of the gravitational field is zero in Newton’s theory.
In GR this divergence is not zero, as can be seen from the
V¢? term in Eq. (2). For such a strategy to be effective,
however, the Newtonian field needs to be sufficiently
slowly varying over the measurement baseline, which can
be tested by varying the baseline.

Table I summarizes the experimental precision possible
for measuring GR effects and the PPN parameters 8 and .
The initial atom interferometry limits assume the 10 m
experiment described earlier, but many upgrades are pos-
sible. For example, using 20072k beam splitters increases
the sensitivity by a factor of ~10. Expanding to a 100 m
long interferometer would increase the sensitivity by a
factor of 10. For the GR terms this improvement would
be even larger; for example, terms 6 and 7 scale as L?
(v, ~ T, L ~ T?). With these improvements it is possible
to reach limits on the PPN parameters of ~10~4, competi-
tive with present limits. Finally, the noise performance can
be improved by using entangled states instead of uncorre-
lated atom ensembles [23]. For a suitably entangled source,
the Heisenberg limit is SNR ~ n, a factor of \/n improve-
ment. For n ~ 10° entangled atoms, the potential sensitiv-
ity improvement is 103. Progress using these techniques
may soon make improvements in SNR on the order of 10 to
100 realistic [24].

Discussion.—By combining a long interrogation time,
LMT beam splitters, and Heisenberg statistics, a ground-
based interferometer could exceed the precision of present
astrophysical tests of GR. Even at comparable precisions,
laboratory tests provide an important complement to as-
trophysical ones. An advantage of laboratory tests is that
they can isolate specific GR effects, such as the nonlinear
coupling and the gravitation of kinetic energy, that are not
isolated in astrophysical tests. For example, the lunar laser
ranging (LLR) test of the PoE constrains the PPN parame-
ters B and vy, but it cannot test for the existence of the
nonlinear coupling. In Newton’s theory the weak equiva-
lence principle (in the sense of equal Earth and Moon
accelerations towards the Sun) is also satisfied and there
is no nonlinear coupling at all. Only in the subclass of
deviations from GR given by the PPN expansion does LLR
imply a nonlinear coupling equal to that predicted by GR to
3 parts in 10*. This happens because PPN is a restricted
class of deviations that does not include many theories.
Using atom interferometers, the nonlinear coupling can be
directly and unambiguously measured, allowing us to test a
truly relativistic effect that does not occur in Newton’s
theory.

Finally we consider whether the Hubble expansion rate,
H, is measurable through the force it exerts on separated
atoms. Unfortunately, according to the PoE, local experi-
ments feel the rest of the Universe through its tidal forces
proportional to Riemann ~H?, which is too small. In
particular, in GR there is no local effect linear in H, as is
sometimes invoked to explain the Pioneer anomaly [25].
Similarly, the PoE prevents the detection of our free-fall
towards the galactic dark matter in a local experiment.

We thank Robert Wagoner and Nemanja Kaloper for
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