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We consider the stochastic background of gravitational waves produced by a network of cosmic strings
and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang
nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find
that current data from interferometric gravitational wave detectors, such as Laser Interferometer
Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string
models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO
runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be
able to explore substantial parts of the parameter space.
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I. Introduction.—Cosmic strings can be formed in phase
transitions in the early Universe [1], and are viable candi-
dates for generating a host of interesting astrophysical
phenomena [2]. Cosmic superstrings are produced in cer-
tain string-theory inspired inflation scenarios [3]. Since
fundamental strings interact probabilistically, and due to
the higher dimensionality of string theories [3], cosmic
superstrings reconnect with a probability p that can be
smaller than unity (p � 1 for field theoretic strings).
Values of p are expected to lie in the range 10�3–1 [4].
In stringy scenarios it is also possible to form more than
one kind of string. Here we assume that only one kind of
string forms, and a network density proportional to p�1.

Cosmic (super)strings can produce strong bursts of
gravitational radiation. This possibility was first consid-
ered by Berezinsky and co-workers [5], and later explored
in detail by Damour and Vilenkin [6,7]. The strongest
bursts are produced at cosmic string cusps (regions of
string that acquire large Lorentz boosts) and could be
detected even by Initial Laser Interferometer Gravita-
tional Wave Observatory (LIGO) [6–8]. The gravitational
waveforms of cusps are simple and robust to classical
perturbations [9] as well as quantum effects [10].

Cosmic (super)strings also produce a stochastic back-
ground of gravitational waves (GWs) [2,6,7,11], whose
spectrum is usually defined as �gw�f�� �f=�c�d�gw=df.
Here, d�gw is the energy density of GWs in the frequency
range f to f� df and �c is the critical energy density of
the Universe. We examine the GW background produced
by the incoherent superposition of cusp bursts from a net-
work of cosmic strings. We build on the results of Damour
and Vilenkin [6,7] generalizing them in two ways: (1) we
consider a generic cosmological model, that allows us to
include the effects of late time acceleration (see [8]), and
(2) we generalize the analysis to include arbitrary loop
distributions. The former generalization results in a sto-
chastic background within an order of magnitude of, but
smaller than, the estimates of [6,7] (see Fig. 1). The latter

generalization allows us to compute the background when
string loops are large when they are formed and thus long
lived, a possibility suggested by recent numerical simula-
tions [12,13]. Recently, Hogan [14] has made analytic
estimates for the case when the size of loops at formation
is about a tenth of the horizon.

We investigate the detectability of the background by a
wide range of experiments. We consider the LIGO bound
from the fourth science run S4 (Bayesian 90% upper limit
�gw < 6:5� 10�5 in 51–150 Hz band [15]), the bound
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FIG. 1. Different experimental bounds and future experimental
sensitivities are shown in relation to the cosmic string spectra
computed for p � 5� 10�3, G� � 10�7. The dot-dashed curve
was computed for " � 1 using Eqs. (4.1–4.7) of Damour and
Vilenkin [7]. The solid and dotted curves were computed using
the method described in this Letter and " � 10�7 and 1, re-
spectively. Note that the model depicted by the solid curve is not
accessible to the pulsar or BBN bounds, but may be accessible to
Initial LIGO [25]. The BBN and CMB bounds apply to the
integral of the spectrum over the frequency range indicated by
the corresponding lines. See text for more detail.
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based on pulsar timing experiments (95% detection rate
upper bound �gw < 3:9� 10�8 at frequencies 1=�20 yr��
1=yr [16]), as well as the expected future reaches of LIGO,
advanced LIGO, Laser Interferometer Space Antenna
(LISA) [17], and pulsar timing experiments [16]. We also
consider the indirect bound due to big bang nucleosynthe-
sis (BBN) [18]:

R
�gw�f�d�lnf�< 1:5� 10�5, assuming

4.4 as the 95% upper limit on the effective number of
neutrino species at the time of BBN [19]. This bound
applies to the signal produced before the time of BBN,
i.e., to redshifts z > 5:5� 109, and to frequencies above
�10�10 Hz (corresponding to the comoving horizon size
at the time of BBN). Similarly, we consider the bound
obtained using the cosmic microwave background
(CMB) and matter spectra [20]

R
�gw�f�d�lnf�< 7:5�

10�5 (95% confidence limit, assuming adiabatic initial
conditions). This bound applies to signals produced before
photon decoupling, i.e., for z > 1100, and to frequencies
above�10�15 Hz (corresponding to the comoving horizon
size at the time of photon decoupling). Finally, we consider
the projected sensitivity of the LIGO burst search, opti-
mized to search for individual cusp bursts at relatively low
redshifts [8]. For the above limits on �gw, as well as in the
remainder of the Letter, we assume a value of the Hubble
parameter H0 � 73 km=s=Mpc [21]. The 5% uncertainty
in the value of the Hubble parameter does not alter our
conclusions. Figure 1 shows the different experimental
bounds in relation to examples of the cosmic string spec-
trum. We will show that these experiments explore a large
fraction of the cosmic string parameter space, making burst
and stochastic GW searches rare and powerful probes of
early Universe physics and string theory motivated
cosmology.

II. Stochastic background.—We have used the results of
Allen and Romano [22], to compute the GW spectrum by
evaluating the strain at a point in space [23],

 �gw�f� �
4�2

3H2
0

f3
Z
dz
Z
dlh2�f; z; l�

dR
dzdl

: (1)

In the following, we describe the quantities that enter this
expression. The strain produced by a cusp at a redshift z,
from a loop of length l, can be read off Eq. (46) of [8]:

 h�f; z; l� � g1
G�l2=3H0

f4=3�1� z�1=3’r�z�
: (2)

Here g1 absorbs the uncertainty on the amount of length l
involved in the production of the cusp [8], G is Newton’s
constant, and � is the mass per unit length of strings. We
expect the ignorance constant g1 to be of O�1� provided
loops are smooth. The dimensionless function ’r�z� relates
the proper distance to the redshift (see Appendix A of [8]).
The burst rate entering Eq. (1) is given by Eq. (58) of [8]:

 

dR
dzdl

� H�3
0 ’V�z��1� z�

�1��l; z���f; z; l�: (3)

Here ’V�z� is a dimensionless function that relates the
volume element to the redshift (see Appendix A of [8])
and the factor �1� z��1 comes from the relation be-
tween the observed burst rate and the cosmic time. The
number of cusps per unit space-time volume from loops
with lengths in the interval dl at a redshift z is ��l; z�dl �
�2c=l�n�l; z�dl (see [8]). Here, c is the number of cusps per
loop oscillation (assumed to be 1 in the analysis below),
and n�l; z� is the loop distribution which we vary in the
analysis below. The fraction of bursts we can ob-
serve is ��f; z; l� � �2

m�z; f; l���1� �m�z; f; l��=4, with
�m�z; f; l� � 	g2�1� z�fl


�1=3. The ignorance constant
g2 absorbs factors of O�1�, as well as the fraction of the
loop length l that contributes to the cusp [8]. We expect g2

to be of O�1� if loops are smooth. The angle �m is the
maximum angle that the line of sight and the direction of a
cusp can subtend and still be observed at a frequency f.
Thus �2

m=4 is the beaming fraction corresponding to the
angle �m, and the � function cuts off events that do not
have the form of Eq. (2).

If loop sizes at formation are determined by gravita-
tional backreaction, then to a good approximation all loops
have the same length at formation and are short lived. We
can take the loop distribution to be n�l; t� �
�p�G���1��l� �t� [6], where �� 50 is a constant re-
lated to the power emitted by loops into GWs, and the
cosmic time is a function of the redshift, t � t�z�. We
parametrize the loop length using " [7], taking � �
"�G�. In this case, the integral over lengths in Eq. (1)
can be replaced with Eq. (59) of [8], enhancing the string
density in the radiation era by a factor of 10 [6].

However, recent simulations [12,13] suggest that loop
sizes at formation are related to network dynamics. In this
case loops may be large and long lived, the loop distribu-
tion n�l; t� is more complicated [see Eqs. (68–70) of [8]],
and the integral over lengths must be computed explicitly.

Damour and Vilenkin [6] made the crucial observation
that the stochastic ensemble of GWs generated by a net-
work of cosmic strings includes large infrequent bursts,
and that the computation of �gw�f� should not be biased by
including these large rare events. When loops are small, all
loops at a certain redshift are the same size and produce the
same amplitude events. Hence, a cutoff can be placed in the
integral over redshifts to remove large events for which the
rate is smaller than the relevant time scale of the experi-
ment [see Eq. (6.17) of [6]]. When loops are large the
situation is more complicated because at any given redshift
there are loops of many different sizes. To deal with this
problem, we use Eqs. (2) and (3) and evaluate dR=dzdh,
the rate from cusps in redshift interval dz and with strain in
the interval dh. We then find the strain h� for which

 R�>h�� �
Z 1
h�
dh
dR
dh
� f: (4)

Then, rather than Eq. (1) we evaluate
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 �gw�f� �
4�2

3H2
0

f3
Z h�

0
dhh2

Z
dz

dR
dzdh

: (5)

This procedure removes large amplitude events (those with
strain h > h�) that occur at a rate smaller than f.

III. Results and discussion.—Our results take the form
of sections of cosmic string model parameter space either
constrained or allowed by past and future experiments (see
Fig. 2). For simplicity we set g1 � g2 � 1.

When loop sizes are given by gravitational backreaction,
we scan the parameter space of reconnection probability
(10�3 < p< 1), dimensionless string tension (10�12 <
G�< 10�6), and the size of the small loops (10�13 < "<
1). For each point in this parameter space, we calculate
�gw�f�. Since the most recent LIGO result [15] was opti-
mized for the frequency independent spectrum, we first

appropriately scale the observed LIGO spectrum and vari-
ance, in order to optimize the search for the calculated
�gw�f� [23]. We perform similar optimizations for the
future projected sensitivities of LIGO and of Advanced
LIGO. For pulsar experiments (and the LISA sensitivity),
we exclude a model if it predicts a larger amplitude than
the limit (or projected sensitivity) at any frequency. To
compare a model with the BBN bound, we perform the
redshift integral in Eq. (1) over redshifts z * 5:5� 109.
Similarly, for the bound based on the CMB and matter
spectra, we integrate over z * 1100. Figure 2 shows the
accessible regions corresponding to the different experi-
ments and bounds. Several conclusions can be inferred.
First, cosmic superstrings (with small values of p) are more
accessible because the spectrum amplitude is inversely
proportional to p through its dependence on the loop
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FIG. 2. Top left: Accessible regions in the "�G� plane for p � 10�3 when loop sizes are determined by gravitational
backreaction. From darkest to lightest, they are LIGO S4 limit, LIGO H1L1 projected sensitivity [cross correlating the data from
the 4 km LIGO interferometers at Hanford, WA (H1) and Livingston, LA (L1)], LIGO H1H2 projected sensitivity [cross correlating
the data from the two LIGO interferometers at Hanford, WA (H1 and H2)], and AdvLIGO H1H2 projected sensitivity. All projections
assume 1 year of exposure and either LIGO design sensitivity or Advanced LIGO sensitivity tuned for binary neutron star inspiral
search. The solid black curve corresponds to the BBN bound, the dot-dashed curve to the pulsar bound, the +’s to the projected pulsar
sensitivity, the open circles to the bound based on the CMB and matter spectra, the �’s to the projected sensitivity of the LIGO burst
search, and the solid circles to the LISA projected sensitivity (accessible regions are to the right of the corresponding curves). Top
right: Same as above for p � 10�2. Bottom left: Same as above for p � 10�1. Bottom right: Accessible regions in the p�G� plane
for the large long-lived loop models. The accessible regions are to the right of the corresponding curves. All models are within reach of
LISA, and most are within the projected pulsar bound.

PRL 98, 111101 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
16 MARCH 2007

111101-3



density. Second, there is much complementarity between
different experiments. The LIGO stochastic search is con-
straining models with large G� and small ". Since the
pulsar limit applies at low frequencies (f � 10�8 Hz), and
due to the Heaviside function on �m in the rate, the pulsar
limit is more constraining to models with larger loop
lengths, i.e., large values of " and G�. A similar argument
applies to the LISA projection, which is most sensitive
around 1 mHz. The LIGO burst search is most sensitive to
small z and large strain cusps, which also implies large "
and large G�. The BBN and CMB bounds are not very
sensitive to ", because in the large-z limit �gw �G�=p,
i.e., independent of ". Third, the most recent LIGO sto-
chastic bound has already surpassed the BBN bound in an
(admittedly small) part of the parameter space. This is
because for some models a significant part of the signal
is produced after BBN. Existing experiments and indirect
bounds already exclude a substantial part of the cosmic
string parameter space. Future LIGO and LISA measure-
ments will continue to explore this parameter space.
Finally, although the LIGO stochastic and LIGO burst
searches are complementary, they also overlap for large
G�. Hence, in the case of detection, the two LIGO
searches could potentially confirm each other.

To analyze the case when cosmic string loops are large at
formation, we take the loop distribution given by Eqs. (68–
70) of [8] with the size of loops at formation given by � �
0:1 [12], and enhance number density of loops by a factor
of 1=p. We scan the parameter space given by 10�4 < p<
1 and 10�12 <G�< 10�6. Our estimate of the GW back-
ground in these models is significantly larger than that of
the small loop models. Hence, the current and future
proposed experiments explore a correspondingly larger
part of the parameter space, as shown in the bottom-right
panel of Fig. 2. In particular, values of p > 0:1 become
more accessible. Our results for current pulsar timing
experiments are substantially less constraining than the
estimates of Hogan [14], which relied on a less conserva-
tive pulsar timing bound [24], and did not include effects of
late-time acceleration. Currently, the pulsar limit is the
most constraining, but Advanced LIGO, LISA, and future
pulsar timing experiments are expected to explore all of
this parameter space. The BBN and CMB bounds are
consistent with, but somewhat weaker than, the pulsar
bound. For these models the constraints on superstrings
from pulsar timing experiments are particularly interesting.
Notice the bound rules out cosmic superstring models with
G� * 10�12 when the reconnection probability is p�
10�3. Even for p� 10�1 superstring tensions with G� *

10�10 are ruled out. Field theoretic strings and superstrings
with p� 1 are ruled out for G� * 10�8.
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