
Scalable Architecture for Coherence-Preserving Qubits

Yaakov S. Weinstein1,* and C. Stephen Hellberg2,†

1Quantum Information Science Group, The Mitre Corporation, Eatontown, New Jersey 07724, USA
2Center for Computational Materials Science, Naval Research Laboratory, Washington, D.C. 20375, USA

(Received 10 May 2006; published 15 March 2007)

We propose scalable architectures for the coherence-preserving qubits introduced by Bacon, Brown,
and Whaley [Phys. Rev. Lett. 87, 247902 (2001)]. These architectures employ extra qubits providing
additional degrees of freedom to the system. These extra degrees of freedom can be used to counter
coupling strength errors within the coherence-preserving qubit and combat interactions with environ-
mental qubits. Importantly, these architectures provide flexibility in qubit arrangement, allowing all
physical qubits to be arranged in two spatial dimensions.
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The encoding of logical qubits (LQ) into subspaces of
multiple physical qubits is a powerful means of protecting
quantum information from decoherence while allowing for
universal quantum computation [1,2]. Experimental ex-
amples of these decoherence free subspaces have been
realized on nuclear magnetic resonance [3], ion trap [4],
and optical systems [5], have been suggested for super-
conducting qubits [6], and have been used to implement
encoded quantum algorithms [7,8]. Logical qubits of this
type also allow performance of quantum logic maximizing
the use of readily available operations while partially or
completely avoiding operations that may add complexity
to the computing hardware or a significant amount of time
to the computation. Specifically, this type of subspace has
been suggested to perform universal quantum computation
with only the Heisenberg exchange interaction for tradi-
tional circuit-based quantum computation [9–12] and
cluster-state computation [13].

One of the best protected LQs introduced to date is the
coherence-preserving, or supercoherent, qubit (SQ) of
Ref. [11]. Supercoherent qubits, comprised of four physi-
cal qubits with equal, always-on, coupling between all
pairs, minimize decoherence by establishing an energy
gap between the logical-qubit subspace and the other ei-
genstates of the system. This forces all local interactions
with the environment to supply energy to the system. In
addition, SQs allow for universal quantum computation
using only the Heisenberg exchange coupling [9]. This
increases the speed of the computation for quantum dot
implementations and removes the strenuous quantum hard-
ware demands of local magnetic fields [14] or g-factor
engineering [15] which would be required for single physi-
cal qubit rotations. However, a number of fundamental
issues were left open in the original work on the SQ
architecture. Chief among them are a scalable method to
couple SQs, and the physical arrangement of the qubits
within the SQ.

In this Letter, we introduce a scalable architecture for
SQs with a practical two-dimensional arrangement of the
qubits. This flexible arrangement incorporates additional
degrees of freedom, in the form of extra qubits with addi-

tional always-on couplings, which can be used to correct
errors in SQ construction and unwanted interactions from
environmental qubits. In addition, this architecture allows
us to continuously maintain the couplings within the logi-
cal qubit while freely switching on and off the couplings
between logical qubits. We demonstrate that these scalable
SQs have nearly the same robustness as the SQs of
Ref. [11] against the dominant form of decoherence in
III-V quantum dots: hyperfine coupling to the nuclear
spins.

The interlogical-qubit coupling in the original SQs cre-
ated a most severe obstacle to scalability. To insure the
system stays in the SQ subspace, Ref. [11] suggests using
equal couplings between all pairs of the eight physical
qubits comprising the pair of SQs to be coupled. This
would be difficult in practice even for two SQs and the
challenge would grow even more acute as the number of
SQs is scaled up.

A more practical solution was suggested in Ref. [13]. If
couplings between SQs are performed adiabatically [12]
the system will return to the logical SQ subspace after the
interaction. The adiabaticity requirement is not difficult to
achieve as adiabatic evolution is required for all ap-
proaches using spins in quantum dots [16].

The two-SQ interaction plus equal logical z rotations on
each of the two SQs performs a conditional phase gate
which, together with the single qubit rotations of Ref. [17],
form a universal set of gates. In practice, the operations to
perform the conditional phase gate may be done simulta-
neously, thus the gate requires only one time interval.

The above shows that inter-SQ interactions can be im-
plemented via control of the couplings between physical
qubits of different SQs. The concern raised in [11], that
coupling between SQs will cause the state of the system to
leave the logical SQ subspace, is solved by the adiabaticity
of the interactions.

Another stringent restriction in the actual construction of
SQs is the need for equal always-on couplings between all
pairs within an SQ and the ability to control these cou-
plings independently. Coupling between quantum dots is
exponentially dependent on the distance between the elec-
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trons within the dots and can be controlled via electrostatic
gates. Nevertheless, a two-dimensional square layout of the
four physical qubits, such as implied in [11] and suggested
in [13], is impractical because the qubits diagonally across
from each other are further apart than neighboring qubits
around the perimeter of the square and are thus more
weakly coupled. This cannot be overcome by electrostatic
gates because the diagonal coupling strength cannot be
controlled independently of the couplings along the
square’s perimeter. A simple wave function overlap argu-
ment can be used to demonstrate this. To increase the
overlap between wave functions across the diagonal, the
potential in the middle of the square can be reduced,
drawing the wave functions into the center region. This
will increase the overlap across the diagonal, but it in-
creases the overlap between wave functions along the sides
by an even greater amount [18].

An alternative is to arrange the four qubits in a tetrahe-
dron. However, this requires that the physical qubits be
placed in three dimensions, an extremely severe technical
challenge. An ideal SQ architecture would allow for the
qubits to be arranged in only two dimensions and include
additional degrees of freedom that would provide flexibil-
ity in the physical placement of the qubits and the cou-
plings between the qubits.

All of these issues can be solved by adding more physi-
cal qubits to the SQ. Additional qubits provide needed
flexibility in the arrangement of the qubits while maintain-
ing the energy gap between the logical subspace and the
other states of the system. These modified SQs are immune
to global decoherence, but are no longer immune to deco-
herence from single environmental qubits. Nevertheless,
the system is exceedingly robust against such errors, espe-
cially when compared with previously suggested encod-
ings. In addition, decoherence from a single environmental
qubit can be combatted by modifying the strengths of
couplings within the SQ. More importantly, the modified
SQs are nearly as robust as the original SQs against the
most important form of decoherence: decoherence affect-
ing each physical qubit in an uncorrelated manner.

Our primary proposed architecture is a six-qubit SQ with
four qubits arranged in a rhombus, such that the distance
between qubits along an edge is equal to the distance along
the shorter of the diagonals. Two extra qubits are used to
mediate the coupling across the longer diagonal as in the
two-dimensional arrangement shown in Fig. 1(a). We
model the system with the Heisenberg Hamiltonian H �
JijSi � Sj. For ease of calculation we assume the couplings
within the rhombus are equal to one. There are a continuum
of possible values for the couplings to the mediating qubits.
Assuming J16 � J35, the coupling J56 yielding the degen-
erate singlet ground state can be shown to be
 

J56 � �J16

����������������������������������������������������������������
J4

16 � 8J3
16 � 12J2

16 � 8J16 � 4
q

� J3
16 � 4J2

16 � 2J16 � 4�=�4J16 � 4�: (1)

The most convenient value of the couplings can be chosen

based on external considerations such as ease of physical
layout. Importantly, we note that J16 can be set greater
than, less than, or equal to 1 (with a minimum of �0:85)
allowing for many possible arrangements of the physical
qubits. Examples of SQ coupling strengths are given in
Table I. Any even-length chain may be used to mediate the
coupling across the longer diagonal. For the SQ shown in
Fig. 1(b), where four extra qubits are used, all couplings
can be set to one except J67 � 1:8569.

The flexibility provided by extra couplings allows for
corrections of imperfection in values of other couplings.
For example, using the coupling constants of the first line
in Table I, let us assume that the couplings cannot all be
tuned and the value of J24 is fixed at 1.1 instead of 1.
Because of the extra degrees of freedom afforded by the
six-qubit SQ, this can be corrected by reducing the value of
J56 to approximately 0.5443. Another example (using the
first line of Table I), stray couplings may develop between
qubits 4–5 and 4–6 (say, J45 � J46 � 0:1) due to the
proximity between those qubits. This can be corrected by
modifying J56 (to approximately 0.5917). Similar flexibil-
ity is evident in the eight-qubit SQ. Stray couplings J45 �
J48 � 0:1 can be corrected by setting J67 to approximately
1.8259. Additional stray couplings, J46 � J47 � J45 �
J48 � 0:1, can be corrected by changing J67 to approxi-
mately 1.8608.
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FIG. 1 (color online). Proposed layouts for SQ with extra
qubits to mediate couplings. The arrangement shown on the
left has four physical qubits arranged such that the distance
between 2 and 4 is equal to the distance between the qubits on
the edges of the rhombus. The extra qubits 5 and 6 mediate the
coupling between 1 and 3. The right figure shows a proposed
layout with four extra qubits mediating the coupling between 1
and 3. Any even length mediating chain can be used to create a
supercoherent qubit.

TABLE I. Coupling strengths to and between mediating qubits
to achieve the necessary degenerate ground state in a six-qubit
SQ, and the size of the energy gap. All other intra-SQ couplings
are equal to 1.

J16 � J35 J56 Energy gap

1 1
8 ��1�

������
33
p
� � 0:5931 . . . 0.1931. . .

1.17672. . . 1 0.3855. . .
2 1

3 �4�
������
37
p
� � 3:3609 . . . 0.8519. . .
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For the six-qubit SQ, single SQ (logical) rotations are
performed by changing one Heisenberg coupling strength
between appropriate pairs of qubits [17]. Depending on the
choice of coupling, this performs a logical z rotation or a
rotation about the axis in the x-z plane 120� from the z axis
[9,12]. Combinations of these operations are sufficient to
perform any SU�2� rotation.

While a logical-qubit chain is sufficient for the imple-
mentation of universal circuit-based quantum compu-
tation, most algorithms can be implemented more effi-
ciently on a higher dimensional lattice. Additionally, a
two-dimensional lattice of logical qubits is necessary to
perform universal cluster-based quantum computation. To
this end we demonstrate that universal quantum computa-
tion can be performed with the two-dimensional layout
shown in Fig. 2. Two pairwise couplings between qubits
in neighboring SQs can be turned on to implement two-
logical-qubit gates. Because of the asymmetry of the SQ
the resulting gate between horizontally neighboring SQs
(implemented by coupling qubits 3–7 and 5–12) is differ-
ent than the gate between vertically neighboring SQs (im-
plemented by coupling qubits 6–13 and 5–15), though
both gate evolutions are diagonal in the logical-
computational basis. The low-lying eigenvalues of the
horizontally and vertically coupled logical-qubit gates are
shown in Fig. 3. For horizontally coupled SQs two of the
computational basis states (operator eigenvalues) are de-
generate, �01 � �10. For vertically coupled SQs, the four
computational basis states are nondegenerate. In either
case, the two-SQ gate operation can be combined with

single logical-qubit z rotations to perform a controlled
phase gate. As these gates all commute the controlled
phase gate can be implemented with a single pulse of the
exchange interactions.

Other inter-six-qubit-SQ coupling methods are possible.
However, the ones discussed above are the best we know of
for satisfying the requirements of a diagonal inter-SQ
coupling and ease of arrangement of qubits.

Fine tuning of the couplings is necessary in order
to account for additional interactions arising from multi-
electron terms. When using a Hubbard Hamiltonian
H � tijc

y
i�cj� �Uni"ni# for a six-qubit SQ, the degener-

ate ground state is obtained for hopping parameters

tij �
���������������
UJij=4

q
only in the infinite U limit. For finite U,

the hopping parameters need to be adjusted slightly [19].

 

FIG. 2 (color online). Arrangement of four six-qubit SQs in a
two-dimensional lattice. Two-SQ gates can be implemented
between horizontally or vertically neighboring SQs by two
pairwise couplings between qubits as described in the text.
Universal cluster-state quantum computation can be imple-
mented as described in [13].

 

0 0.2 0.4 0.6 0.8 1
J

3,7
 = J

5,12

-5.6

-5.5

-5.4

-5.3

-5.2

-5.1

-5

-4.9

-4.8

E
ig

en
va

lu
es

S=1
S=0

0 0.2 0.4 0.6 0.8 1
J

6,13
 = J

5,15

-5.6

-5.5

-5.4

-5.3

-5.2

-5.1

-5

-4.9

-4.8

E
ig

en
va

lu
es

λ01 = λ10

λ00

λ11

λ11

λ00

λ10

λ01

FIG. 3 (color online). Eigenvalues of coupled SQs as a func-
tion of coupling strengths, J3;7 � J5;12 (top) and J6;13 � J5;15

(bottom). Spin-singlet states are plotted as red circles (S � 0),
and spin-triplet states as blue squares (S � 1). The J3;7 � J5;12

coupling splits the degenerate ground state into three states
spanned by the logical-computational basis, �00, �11, the eigen-
values for the two-SQ logical j00i and j11i states, and the
degenerate state, �01, �10. The J6;13 � J5;15 coupling splits the
degenerate ground state into four states spanned by the logical-
computational basis. The above plots use coupling strengths
from the second line of Table I. In both cases, the gap between
the logical subspace and the rest of the system remains large
even when J3;7 or J6;13 approach one.
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The dominant source of decoherence in III-V quantum
dots is the local random magnetic field generated by the
nuclei in each dot [20]. The effect of this decoherence on a
SQ is a splitting of the degenerate ground state (i.e., the
logical-qubit subspace), by �E. This leads to a precession,
or decoherence, time given by �T � @=�2��E�. The pre-
cession times for the 4 and 6 qubit SQ are shown in Fig. 4
as a function of J, the coupling between two physical
qubits within a given SQ (for the six-qubit case we use
the ratio given in the first line of Table I). Also shown are
the precession times of a single qubit and the three-qubit
logical qubits of Ref. [12]. Current experimental data sug-
gests a ratio between the strength of the effective magnetic
field,Hb, and J of 10�6 & Hb=J & 0:01 [21]. Immediately
noticeable is the orders of magnitude increase in decoher-
ence time for the four- and six-qubit SQs. In addition, upon
increasing J, the decoherence time for both of these in-
creases linearly and the six-qubit SQ loses little in robust-
ness against this type of decoherence when compared with
the four-qubit SQ.

In conclusion, we have introduced flexible architectures
for supercoherent qubits with the goal of reducing the
severe constraints required for equal intra-logical-qubit
couplings. These constraints include the lack of ability to
independently control all couplings between qubits. The
schemes introduced here increase flexibility while keeping
the energy gap necessary to protect the SQ from sources of

decoherence. The additional degrees of freedom can be
used to correct mismatches in intra-SQ couplings and to
reduce coupling from environmental qubits. The SQs can
be connected in both one and two-dimensional arrange-
ments, and their natural implementation of diagonal logical
operations makes them particularly suitable for cluster-
state quantum computation. Most importantly, the super-
coherent qubits show a dramatic increase in robustness
against decoherence due to nuclei, the primary source of
decoherence in III-V quantum dots.
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FIG. 4 (color online). Precession time of logical qubits due to
the random magnetic field of nuclei in the quantum dot as a
function of J, the intra-logical-qubit coupling. When the logical
qubit is just a single qubit or consists of three physical qubits, as
in [12], the precession time is independent of J. For the four-
qubit and six-qubit SQs the precession time increases linearly
with J. The figure shows the dramatic improvement in decoher-
ence time gained by properly encoding qubits. The magnetic
field strength used is 0:06 �eV. This and other quantities are
based on the experimental work in [21].
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