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For a small system like a colloidal particle or a single biomolecule embedded in a heat bath, the optimal
protocol of an external control parameter minimizes the mean work required to drive the system from one
given equilibrium state to another in a finite time. In general, this optimal protocol obeys an integro-
differential equation. Explicit solutions both for a moving laser trap and a time-dependent strength of such
a trap show finite jumps of the optimal protocol to be typical both at the beginning and at the end of the
process.
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Introduction.—The concepts of classical thermodynam-
ics like applied work and exchanged heat can be applied to
soft and biomatter systems as the study of the driven
dynamics of single colloidal particles and of single bio-
molecules has shown [1]. Since thermal fluctuations con-
tribute substantially, work and heat acquire a stochastic
contribution and must be described by probability distri-
butions. Exact results constraining such distributions like
the Jarzynski relation [2] and various generalizations
thereof have been derived theoretically [3–7] and tested
experimentally [8–12]. Typically, these exact relations
hold for any time-dependent driving described by an ex-
ternal control parameter ����.

In this Letter, we ask for the optimal protocol ����� that
minimizes the mean work required to drive such a system
from one equilibrium state to another in a finite time t. The
emphasis on a finite time is crucial since for infinite time,
the work spent in any quasistatic process is equal to the free
energy difference of the two states. For finite time, the
mean work is larger and will depend on the protocol ����.
Knowing the optimal protocol ����� could inter alia im-
prove the extraction of free energy differences from finite-
time path sampling both in various numerical schemes
[13–20] and in experimental studies [21,22]. Quite gener-
ally, the smaller the mean work is, the better the statistics
for free energy estimates becomes [17,23]. A priori, one
might expect the optimal protocol connecting the given
initial and final values to be smooth as it was found
recently in a case study within the linear response regime
[24]. In contrast, as our main result, we find here for
genuine finite-time driving that the optimal protocol in-
volves discontinuities both at the beginning and at the end
of the process.

For macroscopic systems, optimal processes have been
investigated under the label of finite-time thermodynamics
for quite some time [25–27]. Indeed, jumps were found
there as well [26] despite the significant differences both in
the role of heat baths and the equations of motion between
macroscopic and stochastic thermodynamics. For the for-
mer, heat reservoirs of different temperature are typically

involved in a search for optimal adaptions of, e.g., Carnot-
like machines to finite-time cycles. In our context, the
system always remains in contact with a single heat bath
of constant temperature T. Moreover, this heat bath pro-
vides thermal fluctuations which require a stochastic for-
mulation in contrast to the deterministic description in
macroscopic finite-time thermodynamics.

The model.—Paradigmatically, a Langevin equation de-
scribes the driven overdamped motion of a single degree of
freedom with coordinate x in a time-dependent one-
dimensional potential V�x; ����� as

 _x � ��
@V�x; ��
@x

� �: (1)

Here,� is the mobility, and time derivatives are denoted by
a dot throughout the Letter. The thermal fluctuations are
modeled as Gaussian white noise

 h�������0�i � 2�kBT���� �0�; (2)

with kB as Boltzmann’s constant. The time evolution of the
probability distribution p�x; �� to observe the particle at
position x at time � is then governed by the Fokker-Planck
equation

 @�p�x; �� � @x

�
�
@V
@x
��kBT@x

�
p�x; ��: (3)

Initially, the system is in thermal equilibrium in the
potential V�x; �i�. During the time-interval 0 � � � t,
the control parameter ���� is varied from �i to the final
value �f. The mean work spent in this process

 W�����	 �
Z t

0
d� _�

�
@V
@�
�x���; �����

�
(4)

becomes a functional of the protocol �����	 where the
average h. . .i is over the initial thermal distribution and
over the noise history. For notational simplicity, we set
kBT � � � 1 in the following by choosing natural units
for energies and times. We will first investigate two case
studies motivated by previously set-up experiments on
colloidal particles and then analyze the general case.
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Case study I: Moving laser trap.—As an almost trivial,
but still instructive introductory example, we consider a
colloidal particle dragged through a viscous fluid by an
optical tweezer with harmonic potential

 V�x; �� � �x� �����2=2: (5)

The focus of the optical tweezer is moved according to a
protocol ����. In previous experiments, such protocols
have been used to test the fluctuation theorem [8] and the
Hatano-Sasa relation [10]. The optimal protocol �����
connecting given boundary values �i � 0 and �f in a
time tminimizes the mean total work (4) which we express
as a functional of the mean position of the particle u��� 

hx���i as

 W�����	 �
Z t

0
d� _���� u� �

Z t

0
d�� _u� �u� _u

�
Z t

0
d� _u2 � � _u2	t0=2: (6)

Here, we have used

 _u � ��� u� (7)

which follows from averaging the Langevin equation.
The Euler-Lagrange equation corresponding to (6), �u �

0, is solved by u��� � m�, where u�0� � 0 is enforced by
the initial condition. Equation (7) then requires the bound-
ary conditions _u�0� � �i � u�0� � 0 and _u�t� � �f �mt
which can only be met by discontinuities in _u at the
boundaries which correspond to jumps in �. Note that these
‘‘kinks’’ do not contribute to the integral in the second line
of Eq. (6). The yet unknown parameter m follows from
minimizing the mean total work

 W � m2t� ��f �mt�
2=2 (8)

which yields m� � �f=�t� 2�. The minimal mean work
W� � �2

f=�t� 2� vanishes in the quasistatic limit t! 1.
The optimal protocol then follows from Eq. (7) as

 ����� � �f��� 1�=�t� 2�; (9)

for 0< �< t. As a surprising result, this optimal protocol
implies two distinct symmetrical jumps of size

 �� 
 ��0�� � �i � �f � ��t�� � �f=�t� 2� (10)

at the beginning and end of the process.
A priori, one might have expected a continuous linear

protocol �lin��� � �f�=t to yield the lowest work but the
explicit calculation shows that

 Wlin � ��f=t�
2�t� e�t � 1�>W� (11)

for any t > 0, with a maximal value Wlin=W� ’ 1:14 at t ’
2:69.

In macroscopic finite-time thermodynamics, the occur-
rence of such jumps has previously been rationalized by
pointing out the special nature of this type of variational

problem where the highest derivative (here �u in Eq. (6))
occurs linearly [26]. In the present model where fluctua-
tions are irrelevant to the mean work, these jumps have the
same formal origin.

Case study II: Time-dependent strength of the trap.—In
this example, fluctuations are crucial. We consider the
motion of a colloidal particle in a trap whose strength
becomes time dependent whereas its position remains
constant. The corresponding potential reads

 V�x; �� � ����x2=2 (12)

with ��0� � �i and ��t� � �f > �i as boundary condi-
tions. Such a potential with a sudden jump protocol has
been investigated experimentally as a test of the fluctuation
theorem [9]. We first derive the equation of motion for the
variance w��� 
 hx2���i

 _w � �2�w� 2 (13)

by multiplying Eq. (3) with x2 and integrating over x. The
mean work (4) can then again be cast in a local functional
of the new variable w and its first derivative by solving (13)
for _�

 W�����	 �
Z t

0
d� _�

w
2
�

1

2
��w� lnw	t0 �

1

4

Z t

0
d�

_w2

w
:

(14)

The minimization of the work functional then requires
solving the Euler-Lagrange equation

 _w 2 � 2w �w � 0: (15)

Its general solution

 w��� � c1�1� c2��2 (16)

contains two constants. The thermal initial distribution
w�0� � 1=�i fixes c1 � 1=�i. The second constant c2 fol-
lows from minimizing the total mean work

 W�
�c2t�

2

�it
� ln�1�c2t��

1

2
��f=�i��1�c2t�2�

1

2
(17)

which leads to

 c�2t �
�1� �ft�

��������������������������������������
1� 2�it� �f�it

2
q
2� �ft

: (18)

The optimal protocol derived from Eq. (13)

 ����� �
�i � c�2�1� c

�
2��

�1� c�2��
2 (19)

for 0< �< t again implies jumps at the beginning and
end of the process as shown in Fig. 1(a). Both the minimal
work W�, see Fig. 1(b), and the scaled optimal protocol
����=t�=�i depend only on two parameters ��f=�i� and
�it.
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For the two limiting cases of an immediate jump, t! 0,
and a quasistatic process, t!1, respectively, the values
of W� also follow from general principles. For an imme-
diate jump, the minimal work

 Wjp
 lim
t!0
W� �

�
��f��i�x2

2

�
�i

�
1

2
���f=�i��1� (20)

is equal to the difference in energy evaluated in the thermal
initial ensemble. In this limit, the optimal protocol
�����=�i � ���f=�i� � 1�=2 is constant for 0< �< t but
has discontinuities at � � 0 and � � t. In the quasistatic
limit, the minimal work

 Wqs 
 lim
t!1

W� �
1

2
ln��f=�i� � �F (21)

is equal to the free energy difference �F between the final
and the initial state. In this limit, the optimal protocol is
continuous at � � 0 and � � t and takes the form

 ����=t� �
�i

�1� ��=t� �
����������������
��i=�f�

q
��=t��2

: (22)

For ��f=�i� � 1, the minimal work is of the order of the
quasistatic work for any �it� � 2= ln��f=�i� as a simple
analysis of Eqs. (17) and (18) shows. Thus, the larger the
change of the control parameter �, the smaller is the time
interval required to essentially reach the quasistatic work,
as quantitatively shown in Fig. 1(c). The origin of this
surprising features lies in the fact that the relaxation time

scales like 1=�. For large �, the particle can follow a larger
change of the control parameter almost quasistatically.
Therefore, the optimal protocol can become quite steep
towards the end of the process for large �f.

General case.—For a general nonharmonic potential, it
is not possible to express the mean work as a local func-
tional of just one variable as we have done for the two
harmonic cases. Rather, our optimization problem be-
comes nonlocal in time since changing the protocol at a
time � affects the mean work increments for all later times
�0 > �. This fact becomes obvious by expressing the mean
work as a path integral average

 W�����	 �
Z
d�x���	p�x���	

Z t

0
d� _�

@V
@�

(23)

over all possible trajectories x��� with weight

 p�x���	 �N p�x; 0� exp
�
�
Z t

0
d�
�
� _x� @xV�

2

4
�
@2
xV
2

��
;

(24)

where N is a normalization constant. Minimizing the
mean work (4) then requires solving the nonlocal Euler-
Lagrange equation

 

d
d�

�
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�W�����	
�����

(25)

where the right hand side can be expressed by correlation
functions as
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FIG. 1 (color online). Optimization re-
sults for a time-dependent strength ����
of a laser trap for different values of
(�f=�i) and �it (case study II):
(a) Optimal protocols ��=�i as a func-
tion of the scaled time �=t. (b) Minimal
work W�. (c) Logarithmic fraction
ln�W�=Wqs� of the optimal work and
the quasistatic work. (d) Relative height
��=�f of the jump of the optimal pro-
tocol at � � 0 in units of �W� �
Wqs�=Wjp.
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In general, this integro-differential equation solved by the
optimal protocol ����� looks rather inaccessible. Exploring
a variational ansatz for ����� allowing for jumps with
numerical evaluation of the mean work seems possible
but may still be a formidable task to be explored in future
work.

In order to use jumps in the protocol ���� for the
efficient extraction of free energy differences from finite-
time path sampling via the Jarzynski relation, one needs an
estimate for the height of these jumps without knowing the
underlying potential. For the moving laser trap (case study
I), we get the relation ��=�f � 2�W� �Wqs�=Wjp. For
case study II, we find numerically that the relative height of
the jump ��=�f at � � 0 is also of the order of �W� �
Wqs�=Wjp, see Fig. 1(d). If such a relation gave the correct
order of magnitude for the optimal jump in general cases, it
could become a helpful tool for estimating the optimal
jump heights. For experimentally determining the optimal
protocol for an unknown potential, we envisage an adap-
tive procedure in which trial protocols (including estimated
trial jumps) are successively improved in an iterative fash-
ion guided by the monitored work values.

Concluding perspectives.—As a main qualitative result,
our analysis of two simple but experimentally realizable
model cases has revealed that the optimal protocol mini-
mizing the mean work required to drive the system from
one equilibrium state to another involves jumps of the
external control parameter both at the beginning and at
the end of the finite-time process. We expect such jumps to
be a generic feature of the optimal protocol for arbitrary
potentials. Even though we have investigated only a single
degree of freedom, the extension to many coupled degrees
of freedom involves only minor notational complexity but
poses no further conceptual challenge.

We have focused on optimal protocols connecting two
different equilibrium states. An optimal protocol for tran-
sitions in finite time between two different nonequilibrium
stationary states could be investigated along similar lines in
the context of steady-state thermodynamics [4]. Likewise,
one can ask for the optimal protocol of cyclic processes
combining mechanical steps with chemical reactions given
a finite cycle time. These perspectives to be investigated in
future work demonstrate that the optimization problem
introduced here for stochastic thermodynamics has not
only a broad fundamental significance. Its ramifications
could ultimately also lead to the construction of ‘‘optimal’’
nanomachines. Finally, it is tempting to speculate which, if

any, biological processes on the cellular and subcellular
level have been optimized during evolution for their finite-
time performance in the noisy cellular environment.
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