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We study the evolution of cooperation modeled as symmetric 2 X 2 games in a population whose
structure is split into an interaction graph defining who plays with whom and a replacement graph
specifying evolutionary competition. We find it is always harder for cooperators to evolve whenever the
two graphs do not coincide. In the thermodynamic limit, the dynamics on both graphs is given by a
replicator equation with a rescaled payoff matrix in a rescaled time. Analytical results are obtained in the
pair approximation and for weak selection. Their validity is confirmed by computer simulations.
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The availability and characterization of data specifying
the networks of contacts between individuals [1,2] has
spurred a renewed interest in the study of dynamical pro-
cesses in structured populations [1-16]. In this context,
evolutionary game dynamics constitutes a widely used
framework, from physics to political science [1-16].
Traditionally, evolutionary game dynamics involves the
replicator equation, describing deterministic dynamics in
infinite populations [17]. In finite populations, stochastic
effects cannot be overlooked [18,19], and many insights
have been gained recently by bridging the gaps between
stochastic and deterministic dynamics and between finite
and infinite populations [20—-22] (for a review, see [15]).

However, population structure is often more complex
than that emerging from a single static graph description
[1]. Individuals do not usually rely on a single network to
carry out their decisions. Decision making is often based
on additional information about the interacting partner,
obtained via networks which rarely overlap perfectly
with the network of interactions. Similarly, our role models
are seldom those we have the possibility to interact with
regularly. Finally, our network of close friends often bears
little resemblance with the network of our professional
relations, similarly to what one observes in the animal
world, where grooming and other manifestations of close
relationship are usually established among kin, despite the
fact that often fitness is acquired via interaction with the
non-kin. Hence, study of dynamical processes in more than
a single network constitutes an important ingredient ne-
glected so far, which is relevant to other processes such as
rumor spreading, traffic regulation, epidemic modeling,
etc. In this work we explore a first step toward the inclusion
of more sophisticated layers of population structure, ex-
plicitly distinguishing two types of graphs defining con-
tacts between individuals: the interaction graph, H,
determines who-meets-whom in an evolutionary game;
the replacement graph, G, specifies evolutionary updating
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or, in the context of cultural evolution, defines who-is-the-
role-model-of-whom. Both graphs have the same vertices,
where each vertex is occupied by one individual. There are
no empty vertices. The graphs H and G can differ in their
edges. Hence, we break the symmetry between these two
types of graphs, compared to the more traditional ap-
proach, in which they coincide. This simple model allows
us to explore the new features associated with this richer
and more powerful representation of population structure,
and also allows us to derive approximate analytical results
whose validity is assessed by means of computer simula-
tions. It will be concluded that, whenever the symmetry
between graphs H and G is broken, it is harder for coop-
erators to thrive compared to the case when the two graphs
coincide. More realistic implementations should also take
into account that strategies and structure coevolve with
variable time scales [23,24].

Let us consider social dilemmas associated with sym-
metric 2 X 2 games between two pure strategies, cooper-
ators C and defectors D. The entries of the matrix ®
represent the payoffs for the row player:

C D
C(R S\. (1)
D ( T P )
R is the reward for mutual cooperation, P is the punishment
for mutual defection, T is the temptation to defect, and S is
the sucker’s payoff. Different orderings of the payoff val-
ues define well-known social dilemmas: The prisoner’s
dilemma (PD) (T > R>P > S), the snowdrift game
(SG) (T > R > S > P), and the stag-hunt game (R > T >
P> S)[8].
Each individual uses either strategy C or D, which he
plays with all his neighbors in the interaction graph H,

accumulating a total payoff II. The fitness is given by
F=1-—w+ wll.Here 0 = w = 1 represents the relative
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contribution of the game to fitness. If w =1 then the
payoff is equal to fitness (“‘strong selection’). If w =0
then the game is irrelevant for fitness; all players have the
same fitness (‘‘neutral drift’’). We shall study the limit of
“weak selection” [18], w < 1, which can be justified as
follows: First, in most real life situations we are involved in
many different games, and each particular game only
makes a small contribution to our overall performance.
Second, weak selection leads to important analytic insights
which are often not possible otherwise (Ref. [19] is an
exception). Simulations suggest that these results are good
approximations for larger values of w [9]. Updating dy-
namics proceed on graph G. Following Ref. [9] we adopt
death-birth (DB) updating: A random individual is chosen
to die; the g neighbors in the replacement graph com-
pete for the empty site proportional to their fitness.
Reproduction can be genetic or cultural. In general, how-
ever, different update mechanisms lead to different out-
comes [25,26]. Details of the present framework and its
extension to other update mechanisms and to games in
infinite structured populations, involving an arbitrary (fi-
nite) number of strategies will be published elsewhere [26].

In a population of size N, the quantity to consider is the
fixation probability, defined as the probability that a mutant
invading a population of N — 1 resident individuals will
produce a lineage which takes over the whole population
[18,27,28]. We denote the fixation probability of strategy X
(=C or D) in a Y population (=D or C, respectively) by
px. For a neutral mutant py = 1/N.

If pc > 1/N, then natural selection favors the fixation of
strategy C. To derive an analytical result for the fixation
probabilities, we resort to the diffusion approximation
under weak selection, e.g., Nw <1 with N>
max{g, h}, where g, h, and [ are defined in Fig. 1. Let xy
denote the global density of strategy X. Let T/ (T) be the
probability that the number of C strategists increases (de-
creases) by one in each update event. The probability
dc(ye) that strategy C ultimately takes over the whole
population, when its initial frequency is y¢, is given as the
solution of the backward Kolmogorov equation [29]

dpc(y) , v0) d*¢c(y)

0 = m(y) dy > dy

2

where m(xc) = T} — T¢ is the mean of the increment of
x¢ per unit time and v(x¢) = (T£ + T¢)/N is the variance
of the increment of x. per unit time. From this equation,
the fixation probability is calculated as po = @(1/N).
Hence, we need to calculate 7 and 7.

Clearly, the state of the population can no longer be
described in terms of global densities of strategies, x. and
Xxp (mean-field approximation). In each configuration of
the population, each vertex can have either a C or a D
individual. There are 2V possible configurations, a huge
number for large N. Here we adopt the pair-approximation
method [30,31] to describe the local configurations of
strategies on graphs, which considers not only frequencies

FIG. 1 (color online). Solid blue lines belong to the interaction
graph H, with connectivity /; dashed red lines belong to the
replacement graph G, with connectivity g = 3; double lines
(dashed red and solid blue) define the overlap graph L, with
connectivity /. In the example shown, all graphs are random and
homogeneous [32]. The procedure to generate them is straight-
forward: given values of h, g, [, we start by constructing a
random regular graph [32] of degree g, ensuring that it is
connected. Subsequently, we augment this graph by increasing
the connectivity of all nodes by 4 — [, such that G has con-
nectivity g, H has connectivity 4, and L has connectivity /.

of strategies, but also frequencies of (connected) strategy
pairs and enables us to estimate the correlation of strategies
in adjacent nodes. We have three different types of pairs:
those connected only through G, those connected only
through H, and those connected through both graphs. We
label each of them (G), (H), or (L), respectively.

Let gyy be the conditional probability that the focal
node is occupied by strategy X given that strategy Y
occupies the adjacent node. This conditional probability
depends on the type of edges connecting X and Y.

Therefore, we need to distinguish qgf(l;l)/ qg(fl]}),, and qg(Ll)Y
the weak selection limit, we expect these ““local” condi-
tional probabilities to equilibrate much faster than global
frequencies of strategies, xy, since the latter will equili-
brate at a speed of order w. Hence, the system reaches a
local steady state characterized by the following values,

independent of the update dynamics [26]

In

G g—2 1
iy = % iy = djy = Bt o @)

It is obvious that correlations between two adjacent nodes

build up only through G, and not via H. Hence, the local

(H)
Xy

quency, xy. Regarding the other edges, (G) and (L), with
probability 1/(g — 1) a player shares a common ancestor
with his neighbor. With the remaining probability, (g —
2)/(g — 1), his neighbor is a random individual. From
Eq. (3) we can calculate T} and T;. For DB updating
the condition p- > 1/N leads to the equation

conditional probability g¢,, is given by its global fre-
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g*h(R+2S —T —2P)>gl2S —2R+ P —T)
+IUS—R-P+T), (4)
and
pc>pp = (gh+ DR —=P)>(gh—= DT =S5). ()

Let us now apply the general results above to the two-
parameter PD; a cooperator, C, pays a cost ¢ for every
edge, and the partner of this edge receives a benefit b > c.
Defectors, D, pay no cost and distribute no benefits. Hence,
T=b,R=b—c,P=0andS = —c. We find that p- >
1/N > pp if

b > h_g (6)

c l
The inequality above, which is valid for DB updating only
[26], suggests that for fixed b and ¢, the optimum configu-
ration for evolution of cooperation occurs when i = g = [.
The degree [ of the overlap should be as large as possible,
while the degrees /& and g should be as small as possible.
This optimum is reached when the replacement graph and
the interaction graph are identical. In this limit we recover
our previous condition, b/c >k (using k=h =g =1)
[9]. Any deviation from the identity between graphs H
and G makes evolution of cooperation more difficult.
Note also that cooperation is never favored if the overlap
is empty (I = 0). Furthermore, Eq. (6) is symmetric in g
and h. Therefore, a highly connected G (large g) and a
sparsely connected H (small /) have the same threshold as
the reverse situation (for a fixed overlap /).

The results obtained, however, strongly depend on the
game under study. Let us now discuss the SG [4], parame-
terized in terms of costs and benefits. In the SG a coop-
erator pays a cost ¢, but two cooperators share this cost.
Whenever one player cooperates, both receive a benefit
b>c Hence, T=b,R=b—c/2,S=b—cand P=
0. Now the condition po > 1/N leads to b/c >[5/2 —
x —x/(2g)]/[2 + x — x/g], and becomes always easier to
fulfill than p > pp which now reads b/c > (3 — x)/(2 +
2x), where x = [/gh. Similarly to the PD, selection will be
more favorable to cooperators if the overlap is maximized.
Unlike the PD, however, cooperators may now become
advantageous even if the overlap [ is zero. Furthermore,
pc > 1/N is no longer symmetric in g and &: As a result, it
is better to have more role models than interaction partners
in the SG.

The pair approximation is only valid for infinite Bethe
lattices (or Cayley trees) where each node has exactly the
same number of links without loops or leaves. However, it
was found in Ref. [9] that, under weak selection, pair-
approximation works extremely well for random regular
graphs and other structures, despite deviations found for
scale-free graphs. We shall test Eq. (6) by means of nu-
merical simulations for the PD on random regular graphs
[32], which lead to population structures such as those in
Fig. 1.

The results are shown in Fig. 2. An excellent agreement
is obtained. In particular, simulations confirm the invari-
ance of the condition above upon exchange of 4 and g.
Finite size effects account for the rigid shift of = 0.018
toward lower values of ¢/b for N = 100 and of = 0.0035
for N = 500 between the simulation results and the theo-
retical predictions, which suggest a 1/N dependence and
an overall insensitivity to the specific values of g, s, and [.
Hence, as the population size increases, the agreement
between the pair-approximation-based predictions and
computer simulations improves.

In practice, for a given finite value of N we need b/c to
be slightly larger than the thresholds predicted by our
analytical calculations.

Finally, we discuss the implications of breaking the
symmetry between H and G in the thermodynamic limit.
When N — oo the description becomes deterministic, since
v(y) — 0 as 1/N. Hence, the rate of change of x is given
by xc = T/ — T . Here we shall discuss the results for
2 X 2 games, although the main results remain valid for m

T T ‘ T ‘ T ‘
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w\ «\——> shift = 0.018
0.01 A
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§ —— shift = 0.003
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I hgl \
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FIG. 2 (color online). Analytical versus numerical calculation
of fixation probabilities. We consider populations of size N =
100 (upper panel) and N = 500 (lower panel). We generate 3 X
10 graphs G and H compatible with fixed (4, g, [), and run 5 X
10° simulations for each graph. We compute the average fixation
probability of a single cooperator in a population of defectors.
The intersection between vertical lines and the horizontal lines at
1/N provide the values predicted analytically by Eq. (6), given
in brackets, for each triplet £, g, [. Symbols provide the results of
numerical simulations. Note that all data sets have been rigidly
shifted by the amounts indicated in the panels, reflecting the
finite size effects which scale as 1/N. Color and line symbols are
the same in both panels (w = 0.1).

108106-3



PRL 98, 108106 (2007)

PHYSICAL REVIEW LETTERS

week ending
9 MARCH 2007

strategies interacting via general m X m symmetric games
[26], for which the replicator equation in a well-mixed
population reads [13],

X = x;(e; - ®x — x - Dx), (7
i=1,--+,m, where e; is the ith unit column vector,
whereas x = (x, - - ~,xm)T. For the social dilemmas de-

fined in Eq. (1) and keeping only the linear terms in w in
TS — T (weak selection) we obtain [33]

Xe=r1xclec (@ +Wx —x-(®+WV)x], (8
where the matrix W reads

C D
c/r 0 o\;
D<—a' 0)
)

and the time scale constant reads 7= w(g —2)X
[g?h — (g +2){]/[g*(g — 1)]. Equation (8) has precisely
the form of a replicator Eq. (7) with time rescaled by the
constant 7 and an effective payoff matrix given by ® + W.
Naturally, the matrix W will depend on the update mecha-
nism employed, although this matrix is always antisym-
metric, even in the case of m X m games with m > 2 [26].

To summarize, breaking the symmetry between interac-
tion and replacement graphs makes it harder for coopera-
tion to evolve in the prisoner’s dilemma in which, for
cooperation to thrive, it is important that our interaction
partners are also our role models. In the limit of weak
selection, and making use of the pair approximation, we
provide simple conditions under which a cooperator be-
comes advantageous when immersed in a population of
defectors. Comparison with exact computer simulations
shows that, apart from population size effects, which scale
as 1/N, the analytical conditions fit nicely the numerical
results. In infinite, structured populations, and for weak
selection, strategies evolve according to a replicator equa-
tion. The effect of population structure is now to induce a
transformation of the payoff matrix which affects solely its
off-diagonal elements. Once such a transformation is per-
formed, then evolution proceeds “as if”’ the population
were well mixed (unstructured).
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