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Network Mechanism for Burst Generation
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We report on the mechanism of burst generation by populations of intrinsically spiking neurons, when a
certain threshold in coupling strength is exceeded. These ensembles synchronize at relatively low
coupling strength and lose synchronization at stronger coupling via spatiotemporal intermittency. The
latter transition triggers fast repetitive spiking, which results in synchronized bursting. We present
evidence that this mechanism is generic for various network topologies from regular to small-world
and scale-free ones, different types of coupling and neuronal model.
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Bursting is a fundamental regime of neuronal behavior,
exhibiting trains of spikes of the action potential mediated
by periods of silence [1]. In some cases its functional
importance, like coordinating movements by antiphase
synchronized bursts from central pattern generators [2],
is pretty well understood. In other cases, like synchronous
high- (>300 Hz) or low-frequency (<300 Hz) bursting in
cortical areas of the behaving or sleeping animal [3], it is
less apparent, leaving place for hypothesizing about its role
in learning, cognition, motivation, movement control, in-
creasing reliability of cortical synapses [4,5] or provoking
neural disorders [6].

Remarkably, the problem of the origin of bursting in
neural ensembles appears to be even more challenging than
its synchronization alone, for which (in case of coupled
intrinsically bursting neurons) a well-developed theory [7]
is often applied. Quite on the contrary, there is a constantly
increasing experimental and theoretical evidence of versa-
tile network mechanisms of burst generation in ensembles
of neurons, which are not intrinsically bursting.

Reciprocal asymmetric inhibition can launch sequential
bursting or so-called winnerless competition dynamics [8],
which has been proposed to explain the hunting behavior
of the marine mollusk Clione [9]. Another network mecha-
nism is suggested by experiments with developing net-
works of cultured cortical neurons and biological and
numerical studies of deafferented cortical slabs [10]. It
comprises initiation of the first spike in an occasional
cell by randomlike miniature excitatory potentials and
the further development and termination of the overall
bursting due to excitatory and inhibitory synapses.

There are strong indications that deterministic noninhi-
bitory networks are able of generating bursts too. Several
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be observed [11]. In some discrepancy with these results,
biological experiments and their detailed computational
reproduction have demonstrated synchronous high-
frequency spiking at moderate electrical coupling between
two midbrain dopamine neurons [12]. The transition to
bursting occurred at stronger coupling via generation of
the slow time-scale (STS) oscillations. At the same time,
intrinsic low-frequency spiking would not generate high-
frequency repetitive spikes and remained stable at large
coupling, in agreement with [11]. The current study was
inspired by a recent finding, showing that the latter path-
way can be realized in large networks of electrically
coupled neuronal-type models [13].

In this Letter we introduce a network mechanism of
generation of synchronized bursting by intrinsically spik-
ing neurons without inhibition. We demonstrate that spikes
creating effective afterdepolarizations (ADPs) in adjacent
neurons cause instability of the regime of synchronous
spiking, as the strength of electrical or excitatory coupling
is increased. This instability excites occasional fast repeti-
tive spiking, which constitute irregular bursting. At
stronger coupling bursts get regularized and synchronized.
In chain ensembles the instability manifests the properties
of the spatiotemporal intermittency and size-independent
threshold. Simulations of scale-free and small-world top-
ologies as well as representing a neuron by a Hodgkin-
Huxley type model give evidence of ubiquity of this phe-
nomenon in complex neuronal networks.

We consider networks of nonidentical neuronal model
maps, proposed in [14], basing our choice on its computa-
tional efficiency:
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where x; and y; are the fast and slow variables, respec-
tively, j = 1, N. In all simulations we use u = 1073, a =
3.5, s5; €[0.15,0.16] (a uniform random distribution) that
provides chaotic spiking in an isolated map; & is the
coupling strength, K; is the number of entries in the ith
neuron. The sum is taken over all neighbors of a neuron in
the network; all connections are reciprocal. The coupling
function corresponds either to electrical G%; = x{ — x%, or
excitatory coupling Gﬁi = (x;, — x;) x(x;), here the rever-
sal potential x,, = 1, y(x) =1 if x>0, and y(x) =0
otherwise, the fast synapse (the synaptic time equals to
unity) is assumed.

Synchronization-desynchronization transitions are deci-
sive for the dynamics of this neural ensemble, thus we
analyze it in terms of chaotic phase synchronization (CPS)
[15]. For each neuron we calculate the average frequencies
of spiking w; and slow time-scale oscillations () ;.
Definition of the spiking frequency assumes that each spike
contributes a 27 growth of the phase of spiking. A 27
increase of the phase of STS oscillations occurs only when
the interval of silence between two spikes exceeds 80
iterations. Note, that while neurons generate STS chaotic
spiking (like for € = 0), both definitions are equivalent. If
fast repetitive spikes form trains of bursts, {}; will charac-
terize the bursting frequency and w; will characterize the
average spiking frequency. This technique allows for a
correct separation of the fast time-scale (FTS) and STS.

Now we summarize the regimes that occur for different
coupling strengths & in a regular chain of electrically
coupled neurons [13]. At low coupling neuronal firings
are unsynchronized [Fig. 1(a)], at moderate coupling they
get synchronized [Fig. 1(b)]. As we increase €, the CPS

FIG. 1. Space-time plots illustrate different regimes that occur
in the chain (1). x; values are represented by gray scale, white
corresponds to minimal values, black to maximal ones. Shown
are (a) unsynchronized spiking, &€ = 0.01, (b) synchronized
spiking, € = 0.05, (c) desynchronized state and irregular bursts:
synchronization is occasionally broken by fast repetitive spikes,
e = 0.1, (d) synchronized bursts with a fractal-like spatiotem-
poral structure of spikes, ¢ = 0.2.

regime becomes unstable and neurons start firing fast
repetitive spikes occasionally thus forming irregular bursts
[Fig. 1(c)]. Further increase of ¢ results in regular synchro-
nized bursts with a fractal-like spatiotemporal structure of
spikes [Fig. 1(d)] [16].

To quantify these transitions we have computed the
variances of the STS and spiking time-scale oscillations
frequencies vs the strength of the electrical coupling for the
chain lengths N = 200, 400, 800 (Fig. 2). We find two
threshold coupling strengths: &€; = 0.035, &, = 0.07, and
quite a smooth transition near €3 = 0.15. No substantial
size dependence of these thresholds is observed in large
networks. In small networks (N < 50) the instability of
spiking CPS becomes depressed and &, rapidly increases
with decreasing N. The thresholds define four intervals:
(i) for € € [0, £,] oscillations on the single existing time-
scale—the slow one—are unsynchronized, (ii) for ¢ €
[&, ;] oscillations on the STS are synchronized, (iii) for
e € [&,, g5] oscillations on the second time-scale—the
fast one—are generated and form irregular bursts,
(iv) and for large coupling € > &5 regular STS oscillations
form synchronized bursting, oscillations on the FTS re-
main unsynchronized.

The transition to CPS at &; is a conventional way how
arrays of nonidentical oscillators behave [7]. The process
of burst regularization and synchronization has also been
described [17]. The problem to be in focus is the mecha-
nism of burst generation, which comprises the instability of
CPS at &, and the generation of the FTS by repetitive
spikes and irregular bursting further on.

To uncover its nature, we record the interspike intervals
T, in every neuron and plot their evolution for different
coupling strengths on one figure (Fig. 3). For ¢ <&, we
observe that chaotic spikes construct only the STS (7, >
100), be it unsynchronized [Fig. 3(a)] or synchronized
[Fig. 3(b)] dynamics. Note that in the synchronization
regime the relative spike timing in neurons is locked but

FIG. 2. Variances of spiking and slow time-scale (STS) fre-
quencies w; and {); over the chain (1) vs coupling strength & for
different chain sizes N.
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FIG. 3. Evolution of interspike intervals for (a) & = 0.01,
(b) € = 0.05, (¢) e = 0.073. In (¢) we denote several windows
of CPS T;.

not tightly fixed, typically of genuine CPS [see the inset in
Fig. 3(b)]. T, sequences [Fig. 3(c)] demonstrate the inter-
mittent nature of the developing instability. The time in-
tervals, during which fast repetitive spikes are generated,
are interrupted by windows of synchronized STS spiking
[Fig. 3(c)]. The closer ¢ is to &,, the larger become win-
dows of CPS. In Figs. 4(a) and 4(c) we show statistical
properties of interspike intervals 7, and time durations of
windows of CPS T, respectively. Remarkably, the proba-
bility distributions of 7; demonstrate a power-law depen-
dence over five decades in a finite interval of the coupling
strength with e-dependent exponents.
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FIG. 4. Probability distributions of interspike intervals P(7) in
chains of (a) electrically coupled Rulkov’s model neurons (N =
200) and (b) excitatory coupled Hodgkin-Huxley type neurons
(N = 50). For Rulkov’s model neurons follow (c) duration of
stable CPS windows P(T}) for different values of the coupling
strength (solid lines are guides for an eye) and (d) dynamics of
fast variables x; in three neighbored neurons [generation of
ADPs and a fast repetitive spike in the 27th neuron (bold line)
by the 28th].

The instability is triggered when a spike in an adjacent
neuron creates or enhance an ADP in a just fired neuron
[afterdepolarizations indicated by arrows in Fig. 4(d)].
Should the coupling be strong enough the ADP trans-
forms into a fast repetitive spike (note the second spike
in the 27th neuron in Fig. 4(d)]. The presence of the
small parameter wu allows us to separate dynamics of
autonomous maps (1), € = 0, into slow and fast motions
[14]. Applying the standard analysis we can approximate
the curve for slow motions by y = x + a/(x — 1), its

stable and unstable parts being {W*": x%* = (1 +y =+

J(1 —y)?> —4a)/2}. The slow motion along W* corre-

sponds to periods of silence, W* separates fast trajectories
converging to W* and those corresponding to spikes.
Therefore, W* gives a threshold to be overcome by an
ADP for it to result in a repetitive spike, an estimation

reads x“(y) — x*(y) = /(1 — y)> —4a. Note, that this

threshold increases with decrease of y (y is essentially
negative). Termination of network generated bursts can
be explained too. During sequential spiking y substantially
decreases, as the trajectory spends most of the time above
the nullcline {x* = —1 + s: y**! =y} (1). Thus, after
several spikes, a neighbor-generated ADP cannot exceed
grown threshold and the burst ends.

Electrical coupling synchronizes interacting neurons un-
til the faster neuron fires (excitatory coupling leaves this
stage neutral). Its firing is also a synchronizing event, as it
pushes the slower oscillator up [note a depolarization of the
27th neuron just after a spike in the 26th at time ¢t = 530 in
Fig. 4(d)]. On the opposite, firing of the slower neuron
desynchronizes them, as it pushes the faster one up towards
the next firing, creating an effective ADP [in the 27th
neuron at ¢ = 550, caused by a spike in the 28th neuron,
see Fig. 4(d)]. Varying € we change the balance between
synchronization and desynchronization and observe the
instability of synchronization when short desynchronizing
intervals prevail.

To test for this mechanism on the most realistic class of
model neurons, we chose one of the Hodgkin-Huxley—type
models (for description and original parameters see [18],
we modified gn,-y = 0.09, g = 0.06 that ensures in-
trinsic spiking). The simulations were carried out in chains
of electrically or excitatory coupled neurons, the coupling
term (synaptic current) being I = g (Ve = Viout)
in case of electrical coupling and IV = gy, 7(¢)(Ey, —
Viost) in case of excitatory. Here Vi, Vo are pre- and
postsynaptic potentials, Eg, = 0 is the reversal potential,
F=aA(l —r)— B,r, ay, =500s, B, =20s"1, A=
0.5 during 2 ms after a spike and A = 0.0 otherwise [19]. A
depolarizing dc current I € [0; 0.02 nA] (taken randomly)
was assigned. We observed similar transitions as above, the
threshold values being ggn; = 0.2 uS, gyn> = 0.4 uS,
8syn3 =~ 1.3 uS for electrical coupling and g, =
0.6 1S, geyno> = 0.8 uS, gyn3 = 2.5 uS for excitatory.
Distributions of the interspike intervals P(T;) near the
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FIG. 5. Variances of (a) spiking and (b) STS frequencies w;
and () ; vs excitatory coupling strength for local coupling (LC),
scale-free (SF), and small-world (SW) network topologies (N =

200, averages over 100 realizations shown).

instability threshold [Fig. 4(b)] are qualitatively the same
as in case of Rulkov’s model neuron [Fig. 4(a)].

To demonstrate persistence of the studied mechanism in
complex networks we turn back to the Rulkov’s model and
implement scale-free and small-world topologies [20] and
assume excitatory coupling. The scale-free network we
simulate is characterized by the node degree K distribution
P(K) <« K=7, v = 2.2 (with regard to the recent experi-
mental study of connectivity of functional brain networks
[21]), and the mean (K) = 4.2. The small-world network
has on the average 10 links per neuron and the probability
of rewiring a short-range regular link is p = 0.1. The
results of the simulations [Figs. 5(a) and 5(b)] demonstrate
the same scenario of the onset of bursting via instability of
synchronized chaotic spiking. This similarity becomes
quite natural, as one takes into account that fast repetitive
spiking is the result of neighbor-to-neighbor interactions,
as discussed above.

In summary, we have demonstrated a deterministic net-
work mechanism of burst generation by intrinsically spik-
ing neurons without inhibition. The increased electrical or
excitatory coupling created and enhanced afterdepolar-
izations in neighbor neurons thus leading to the instability
of synchronous spiking. Exceeding a certain size-
independent threshold of instability launched occasional
fast repetitive spikes and the onset of irregular bursting in
the network, to be regularized and synchronized at stronger
coupling. In chain ensembles this instability was charac-
terized as the spatiotemporal intermittency. This mecha-
nism was shown to persist in complex networks, under
electrical or excitatory coupling and within a Hodgkin-
Huxley type model. Beside an apparent impact on the
theory of generation and synchronization of oscillations
on multiple time-scales, these findings may directly apply
to neurobiological systems, revealing one of the possible
mechanisms for burst origin. Another prediction is that
bursting should appear more often than spiking in large-
scale neuronal networks. And we strongly expect the re-
ported mechanism to be observed in biological
experiments.
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