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We consider systems undergoing very-low-temperature solid-solid transitions, exhibiting the well-
known ‘‘broken-ergodicity”’ problem that is often so severe that even the replica exchange method
converges too slowly. We propose an improvement of the latter, which consists of coupling the lower-
temperature random walks to analytically generated random walks corresponding to an auxiliary
harmonic superposition system. Numerically accurate results are obtained for several Lennard-Jones
clusters, which have so far been treated only by the harmonic superposition approximation.
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In the present Letter we are concerned with the so-called
“solid-solid” structural transformations that generally oc-
cur in clusters, such as van der Waals clusters. The latter
are often modeled by the Lennard-Jones (LJ) pair potential.
Consequently, we will limit our discussion to the LJ clus-
ters. However, both the methodology that we develop and
our conclusions can possibly be extended to a broad range
of problems, from protein folding to condensed-phase
structural transformations.

A systematic analysis of LJ clusters reveals that generic
properties, such as the melting temperature or temperature
of surface reconstruction (see, e.g., Refs. [1-3]), change
monotonically with size. However, the rich size-specific
behavior of LJ clusters arises at low temperatures because
the global energy minimum is highly sensitive to cluster
size. Well-known examples of this behavior include clus-
ters with sizes n = 38, 75-77, 98, and 102-104 [2,4-11].
In each of these cases, the highly symmetric nonicosahe-
dral global minimum belongs to a narrow funnel of the
potential energy surface (see the overview [12] describing
a ‘“‘potential energy funnel”). A high potential barrier
separates this narrow funnel from an icosahedral funnel.
Albeit energetically less favorable, the low-energy icosa-
hedral structures have higher vibrational entropy and, con-
sequently, become thermodynamically more favorable at
some finite, but usually low temperatures [2,8]. The corre-
sponding structural transformation is then characterized as
a “‘solid-solid” transition. Accurate numerical simulations
of such phenomena are extremely challenging, and have
become possible only recently due both to the efficiency of
the replica exchange method (REM) [13,14] and to gradu-
ally increasing computer power, which permits extremely
long Monte Carlo (MC) runs. Selected examples of such
calculations can be found in Refs. [1,3,9,10,15]. However,
despite some recent successes, it is not hard to find a case
that causes the standard version of the REM to display the
“broken-ergodicity” behavior.

In the standard REM framework, the sampling effi-
ciency at the lowest temperature, T,,,, depends on ex-
changes with higher-temperature random walks, which
can eventually exchange with the one that can sample the
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whole configuration space. On the other hand, when the
temperature is too high the volume of the configuration
space may become too large implying that the system may
still need very long times to find the relevant funnel(s) that
could be very narrow. Furthermore, to maintain equal
exchange rates (e.g., 50%) between adjacent replicas, the
required total number of replicas grows approximately as
K~ T;ﬁl [16]. This factor too can affect the correlation
times significantly, since a very small value of T, results
in a large number of replicas.

Figure 1 gives an example of a system (the LJ3; cluster)
that undergoes a low-temperature structural transformation
from the Mackay global energy minimum to the lowest
anti-Mackay minimum [3,17]. The heat capacity was cal-
culated with a standard version of the REM. Although a
rigorous correlation time analysis has never been per-
formed for this case, the lower-temperature peak shows
noticeable differences between the two independent calcu-

FIG. 1 (color online). Low-temperature heat capacity for the
LJ5; cluster from two independent REM calculations, in the
absence of exchanges with the proposed auxiliary harmonic
superposition system. In each calculation, averaging was over
1.5 X 10° MC steps, but the convergence of the low-temperature
peak is still not perfect.
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lations, each using as many as 1.5 X 10° MC steps, where
we define an MC step as one attempt to move a single
particle in all the Metropolis random walks. (In order to
reduce the statistical errors to the thickness of the curve at
least 10'% MC steps are needed.) We note also that the case
of LJ3; is relatively easy, because both low-temperature
structures are of the icosahedral type, thus the energy
barrier separating those structures is not too high. The
situation becomes much worse for LJ3g [9], where the
random walks have to be an order of magnitude longer.
We now believe that the results reported in Ref. [10] on the
decahedral-icosahedral low-temperature transition in LJ
clusters with n = 75-77 are not well converged even after
about 10'! MC steps, which is around the practical limit of
currently available computers. For even more pathological
cases (n = 98, 102—-104), it is unlikely that the standard
version of the REM can ever converge in the region of the
solid-solid transitions.

Since the REM was introduced, numerous modifications
and improvements of this method have been suggested.
However, in the present Letter we cannot afford an ade-
quate review of the relevant literature. Our proposal to
overcome the broken-ergodicity problem, still within the
REM framework, is to add to the set of conventional
Metropolis random walks an auxiliary random walk that
can switch often between two or more funnels. For a given
set of energy minima, we consider an effective potential
arising from the superposition of harmonic potentials ap-
proximating the true potential in the vicinity of each mini-
mum. Use of such potential allows us to generate indepen-
dent, canonically distributed random points analytically,
thus minimizing the correlation times in the auxiliary
system. To the best of our knowledge, this latter feature
of our method is new, while the idea of introducing an
auxiliary system with better sampling properties and able
to exchange its configurations with the system of interest is
well known.

We consider a n-atom system described by the potential
V(r) using the mass-scaled Cartesian coordinates. Without
loss of generality, for all configurations we assume that the
center of mass is located at the origin of the coordinate
system.

Let {r,} be configurations of different energy minima
that are separated by high barriers and are assumed to
contribute to the properties of the system at low tempera-
tures. Formulation of the present method would be
straightforward if the energy minima were points in the
configuration space. Unfortunately, for a cluster, the situ-
ation is complicated because V(r) is invariant not only
under translations, inversion, and permutations of atoms,
but also under rotations of the cluster around its center of
mass. Factoring out the translations, every minimum gives
rise to 2[;n!/h, of three-dimensional manifolds, where
h, is the order of the point group for the @th minimum, and
n; defines the number of atoms of the kth type. For each
minimum, the Hessian matrix K, has exactly six zero
eigenvalues, so, strictly speaking, the 3n-dimensional

Gaussian distribution arising from the harmonic approxi-
mation is not a meaningful approximation to the true low-
temperature canonical distribution and is not even defined
uniquely. In what follows, we give an unambiguous defi-
nition of the harmonic superposition system.

For the ath minimum, let ), be a disk of sufficiently
small radius & that belongs to the purely vibrational hyper-
plane, i.e., the (3n — 6)-dimensional hyperplane orthogo-
nal to all the translational and rotational eigenvectors of
K .

a-

reQ,, iff ||r—r,||<8é and r L KerK,. (1)

An unambiguous harmonic potential in the vicinity of
the ath minimum can be defined for points r € ),

V,(r) =E, + %(r —r ) K, (r—rp), 2)
together with the normalized Gaussian distribution,
1
Go(r; B) = e AValr, 3)
P 2.8

Here the vibrational partition function for the ath mini-
mum is

Z,(B) = e—ﬁEa<2€Tl—lAai>—1/z

l
with the product taken over (3n — 6) nonzero eigenvalues,
Agis of K.
For a point r in the vicinity of one of the minima define
its projection

ro = RPreQ,, (€))]

where P is an appropriate permutation of the atoms and R,
is a rotation (possibly including the inversion) of the cluster
around the origin. (An efficient algorithm of finding such
P and R will be described elsewhere.) We can now extend
the definition of the harmonic potential to the subset that
can be generated from (), by the inversion and all possible
rotations and permutations:

Vharm(r) = Va(rQ)- (5)

Consequently, we also define the canonical distribution
function for our harmonic superposition system [18],

G(r: B) ~ ¢ BVium(0), (6)

At sufficiently large values of the inverse temperature S =
1/kgT Eq. (6) mimics the true Boltzmann distribution,

W(r; B) ~ e AV, (7

Most importantly, random points distributed according
to G(r; B) can be generated analytically as the latter can be
represented as a superposition of normalized Gaussian
distributions. In order to correctly account for permuta-
tion/inversion and rotational symmetries we generate the
random points only within the set () := U,{), with the
reduced distribution function
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GQ(F; :8) = ZPa(B)Ga(r; B)’ r e Q’ (8)
where the weights are
_ 1 Z,(B) < Z.B)
P,(B) = 7B h, Z(B) = ; o

For sufficiently big B the Gaussians practically vanish
outside the disks (),, so we have the normalization con-
ditions:

[, Gurpar=1c Srap=1. ©
Moreover, the two probability distributions [Egs. (6) and
(8)] are related as

[ F()G(r; B)dr _ [o F(Gq(r; B)dr
[ron G(r; B)dr [a Ga(r; B)dr

for any function F(r) that is invariant to translations,
rotations, inversion, and permutations of identical atoms.

‘We now consider a set of coupled random walks running
at different temperatures according to the standard REM
scheme [13,14], which maintains the Boltzmann probabil-
ity distribution (7) in each random walk. Such a scheme
includes at least two types of moves, namely, a standard
Metropolis move involving a single random walk, and a
move involving exchanges of configurations between two
random walks with similar temperatures. In addition to
these two moves we introduce a new move that involves
configuration exchange between a particular random walk
and the auxiliary harmonic superposition system. That is, a
random trial point ¥’ € () is generated analytically accord-
ing to the probability distribution (8). The trial point is then
accepted with probability

(10)

n_ . [, WEBG(r; B)
Pr=r)= mm{l’ W(r; B)G(r'; B)}

=S min{ly eB[AV(r,)_AV(r)]}’ (11)

where AV(r) = Vyum(r) — V(r). Clearly, the number of
minima in the auxiliary system can be greater than two
and the new move can be utilized independently for differ-
ent random walks running at different temperatures.

The new move (as well as the standard REM moves)
satisfies the detailed balance condition, which ensures that
the points in the random walks generated by such moves
will be distributed according to W(r; 8). Furthermore,
the new move is to be implemented only for particular
random walk(s), for which the switching rate is signifi-
cant. Exchanges of configurations between the coupled
random walks maintain ergodicity of the system at all
temperatures.

The sampling efficiency of the new move depends on
how frequently the random walk switches from one mini-
mum to another. The switching rate in turn depends on the
following two factors. (i) The probabilities, P, (), for the
trial point 7/ to appear in different minima. This factor can
be optimized by adjusting the value of (. For example,

equal statistical weights [P(8) = P,(B)] for two selected
minima correspond to the value [2]

%Z In(A1;/Ay;) + In(hy/ hy)

am = — . 12
Bhdrm Ez_El (12)

(ii) How well the harmonic potential approximates the true
potential for points sampled by the canonical distribution
at 8 = Bp.m- The acceptance probability (11) will have an
appreciable value when V(r) is not very different from
Vharm(7). However, when the harmonic approximation is
poor, regardless of the other factors, P(r — r') will be
nearly zero. For example, the harmonic approximation is
poor for the LJsg cluster, where the temperature of the
octahedral-to-icosahedral solid-solid transition appears to
be too high. To use the present method for such cases, the
procedure must be modified, for example, by introducing
additional swapping parameters. (The corresponding ex-
tensions of the method will be explored elsewhere.)

Expression (12) is known in the context of the harmonic
superposition approximation (HSA) [2,18]. As long as the
potential energy is well represented by its harmonic ap-
proximation for the corresponding energy range, Eq. (12)
provides a good estimate for the temperature of the struc-
tural transformation from one minimum to the other.
Consequently, the HSA becomes more accurate for cases
with lower transition temperatures.

We carried out numerical tests on the LJ;; cluster to
verify that the heat capacity computed by the new method
is indistinguishable, within the statistical errors, from that
computed by the standard version of the REM (the com-
parison is not shown here). Although more than two energy
minima contribute to the low-temperature peak, our auxil-
iary harmonic superposition system included only the
Mackay global minimum and the lowest anti-Mackay
minimum. However, the latter circumstance does not
make our method approximate, while having the two min-
ima still removes the numerical bottleneck associated with
the slow switching rate between the two major funnels.
Notably, for the case of LJ5;, the numerical gain due to the
exchanges with the harmonic superposition system turns
out to be between 2 and 3 orders of magnitude compared to
the regular REM calculation. The present method is ex-
pected to yield even higher gains for more difficult cases.

Figure 3 shows heat capacities for several LJ clusters
with nonicosahedral global minima in the low-temperature
regime. The global minimum of LJ¢g has tetrahedral sym-
metry, while the global minima of LJ,q,—;¢4 have decahe-
dral symmetry. The next-in-energy local minimum in each
case is a Mackay icosahedron. So far the corresponding
solid-solid structural transitions for these systems have
been characterized only using the HSA [2]. In the present
study, the replica temperatures were chosen to cover only
the ranges around the low-temperature peak. This choice is
possible because at sufficiently low temperatures only the
two lowest energy minima make a noticeable contribution
to the properties of the system. For each case we performed
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FIG. 2. The heat capacity of LJ;(, obtained by pasting together
the results from two independent calculations: one using the
present method for temperatures 7' << 0.03, the other using the
conventional REM for 7" > 0.03 [3]. The three peaks correspond
to three distinct structural transformations.

about 10° MC steps per temperature. Most interestingly, as
in the case of LJ3; [17], the HSA gives an excellent
estimate of the heat capacity at low temperatures, which
is now confirmed numerically.

At higher temperatures all clusters in this size range
undergo two more structural transformations [3]: the
Mackay-to-anti-Mackay surface reconstruction and core
melting. This is shown in Fig. 2 for LJ;(,, for which the
heat capacity has two other peaks at higher temperatures.

In conclusion, we presented a substantial improvement
of the REM to accurately describe very-low-temperature
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FIG. 3 (color online). The heat capacities of LJ, clusters with
n =98, 102-104, computed by the present method (dashed
lines) and by the harmonic superposition method (solid lines).
In each case the peak is due to the solid-solid structural transition
from the global nonicosahedral energy minimum to the lowest
icosahedral local minimum.

structural transformations in many-body systems and dem-
onstrated its applicability to several cases of LJ clusters
that seemed so far to be numerically intractable. A quan-
tum version of our method can be implemented in the
context of the variational Gaussian wave packet method
[19]. In principle, the method can also be applied in a
similar context to other systems, e.g., to describe solid-
solid phase transitions in bulk materials or equilibrium
properties of proteins involving different conformations.
However, the requirement of an a priori knowledge of the
minima representing the relevant funnels may make the
method difficult to apply, especially in the cases corre-
sponding to excessively large numbers of local minima
involved.
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