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A newly discovered group of alloys, called Gum Metals, approaches ideal strength in bulk form,
exhibits significant plastic deformation prior to failure, and shows no indications of conventional-
dislocation activity. Two conditions must be met for a material to exhibit this ‘‘ideal’’ behavior: (1) the
stress required to trigger conventional-dislocation plasticity in the material must exceed its ideal strength,
and (2) the material must be intrinsically ductile when stressed to ideal strength. Gum Metals satisfy both
criteria, explaining their remarkable mechanical properties.
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In 1926, J. Frenkel [1] suggested that the ideal strength
of a metal should be given approximately by�=5, where�
is the metal’s shear modulus. Frenkel put forth the simple
argument that plastic deformation would become inevi-
table when the applied shear stress was sufficient to
make adjacent planes of atoms glide rigidly over one
another. Since the yield strengths of typical metals were
nearer �=1000, it was clear that the Frenkel model did not
apply. Its major shortcoming was identified shortly there-
after [2– 4] when it was realized that plastic deformation
could be initiated by the motion of crystal dislocations at
stresses well below the ideal shear strength.

The understanding of ideal strength has evolved signifi-
cantly since the 1920’s [5–15]. The ideal strength of a
crystalline solid is determined by the elastic instability of
the crystal lattice, and the thermomechanical criteria that
govern elastic stability are well established. However, very
few bulk materials fail at the limit of strength.

Presently, researchers in the mechanics of materials are
excited by the recent discovery of a group of high strength,
ductile alloys, called Gum MetalsTM, whose bulk mechani-
cal behaviors appear to be governed by elastic instability at
the ideal strength [16]. Gum Metals are multicomponent
body-centered-cubic (bcc) solid solutions based on the Ti-
Nb binary (a typical composition is, in weight percent, Ti-
35.9Nb-2Ta-2.7Zr-0.3O). These alloys sustain very large
elastic deformation prior to yield (�3% elastic strain).
After yielding, at very high stress, they sustain significant
plastic deformation prior to failure (�10%), apparently
without the participation of conventional dislocations.
The plastic strain occurs through the formation of large,
planar faults, accompanied by ‘‘nanodisturbances’’ that
can be represented as dislocation dipoles, but with non-
lattice Burgers vectors [17]. This pattern of deformation
might be expected of a material that fails in shear near its
ideal strength. Prior studies of this behavior focus on the
vanishing of certain elastic constants at a certain electron
concentration [18,19]. Here, we formulate an argument
that addresses the competition between dislocation mobil-
ity and ideal shear, and demonstrate that, in contradiction

to 60 years of metallurgical wisdom, it may be practically
possible to pin dislocations even at stresses that exceed the
ideal strength of the crystal.

There are two criteria that must be satisfied for a mate-
rial to have useful strength near its ideal value. First, the
ideal strength must be below the stress at which the mate-
rial would deform by conventional dislocations. Second,
when the material is stressed to elastic instability (ideal
strength) it must fail by shear rather than by cleavage
fracture, whatever the loading geometry. Consideration of
the elastic properties of Gum Metals indicates that they
satisfy both criteria.

The simplest approach to ab initio calculations of the
elastic properties of disordered solid solutions is a
pseudopontential-based virtual crystal approximation
(VCA). Within VCA, the electron-ion interaction within
the alloy is modeled using a pseudopotential that is the
concentrated-weighted average of the pseudopotentials for
the pure elements composing the alloy. VCA has the
advantages of computational simplicity and preservation
of the crystal symmetry of the alloy. The elastic properties
of Ti-V alloys are described well within VCA, and these
alloys will serve as a Gum Metal approximant.

The elastic constants of bcc Ti-V alloys are shown in
Fig. 1 plotted versus the valence electron concentration,
e=a. The theoretical values are calculated using ABINIT

[20] with Troullier-Martins type pseudopotentials gener-
ated using the Fritz-Haber-Institute pseudopotential code
[21] and applying VCA. An energy cutoff of 50 Ha
(1360 eV) is necessary to obtain convergence. The
Brillouin zone summations are carried out on a symme-
trized 14� 14� 14 Monkhorst-Pack grid. A Fermi-Dirac
smearing (0.01 Ha) is used to accelerate convergence.
Comparison of the results of VCA calculations for the
shear modulus C11 � C12 for Ti-V alloys to those com-
puted using supercell methods [22] and experimental mea-
surements [23] indicate that VCA provides a very good
description of the elastic properties of the alloys (Fig. 1).

Figure 1 shows the computed moduli governing tension
(Ehkl) and shear (Ghkl) for the three crystalline orientations
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of highest symmetry in the bcc lattice of Ti-V: h001i, h011i,
and h111i. Ehkl is the modulus for tension along hhkli, and
the Ghkl’s are shear moduli with G001 corresponding to
shear along h001i on f010g, G011 to shear along h011i on
f011g, and G111 to shear along h111i on the planes f111g,
f112g, and f123g. There are two valence electron to atom
ratios of special interest. First, at e=a� 4:1 four different
moduli vanish simultaneously (E001, E011, G011, and G111):
the bcc lattice becomes unstable in the absence of an
applied stress. The simultaneous vanishing of these four
moduli signifies a spontaneous bcc to hexagonal-close-
packed (hcp) transition as the electron concentration drops.

The second special value is e=a� 4:7, where the te-
tragonal shear modulus C0 � �C11 � C12�=2 is equal to the
shear modulus C44. At this concentration, the alloy is
elastically isotropic. The alloy becomes increasingly an-
isotropic as the electron concentration falls. When e=a�
4:24, a typical value for Gum Metal, the Ti-Valloy has very
low moduli for h111i shear and h001i tension but is highly
anisotropic.

The ideal strengths of Ti-V alloys are computed for
uniaxial tension in h001i (the weak direction in bcc) and
simple shear in f112gh111i (the weakest slip system) using
the methodology described in [11]. The ideal shear stress-
strain curves are plotted in Fig. 2(a) for Ti75V25, Ti65V35,
and Ti55V45. The stress-strain curves are approximately
sinusoidal, a result expected from symmetry, with an initial
slope fixed by the modulus (G111) of the relaxed bcc

crystal. The ideal shear strength, �m—the maximum in
the curve—is �m � �"m=��G111 � 0:11G111, where "m �
0:34 is the strain associated with transformation to a stress-
free body-centered tetragonal state (bct). Hence the ideal
shear strength scales directly with the shear modulus, and
decreases monotonically with e=a. Further, Roundy et al.
showed that the ideal shear stress for slip on the f110g and
f123g planes of W is nearly equal to the ideal strength for
slip on the f112g plane [14]. Since bcc symmetry is the
origin of this approximate equality, we use the ideal shear
strength on the f112g plane as representative of shear
strength along the other slip planes [24].

A very similar result obtains for a tetragonal strain (the
‘‘Bain’’ path) in uniaxial tension along h001i, the usual
weak direction in the bcc structure. The calculated results
are presented in the dark curves in Fig. 2(b). A tetragonal
strain of �0:28 in the �001� direction transforms the bcc
lattice into face-centered-cubic (fcc) (this is the ‘‘Bain
strain’’ that governs martensitic transformations in steel
[25]). Since the fcc structure is also stress-free (by sym-
metry), the ideal tensile strength is reached at a tensile
strain of about 0.14, at a tensile stress �m � 0:09E001. The
tensile strength decreases monotonically with E001, and
consequently, with e=a.
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FIG. 2 (color online). (a) Ideal uniaxial shear deformation
along h111i on f112g in Ti-V binary bcc alloys. (b) Ideal uniaxial
tensile deformation along h100i. The solid and open symbols
represent the tetragonal path (Bain path) and orthorhombic path,
respectively.
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FIG. 1 (color online). (a) Comparison of experimental, super-
cell and VCA results for C11 � C12. Supercell, VCA, and ex-
perimental results are in reasonable agreement, suggesting VCA
provides an accurate description of Ti V alloys. (b) Elastic
moduli of bcc binary Ti Valloys computed using VCA (see text).
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Given that both G111 and E001 decrease monotonically
with e=a, it is not surprising that Ti-Valloys have relatively
low ideal strengths as the concentration draws close to bcc-
hcp transition. Interestingly, the calculated ideal tensile
strength of Ti75V25, an alloy with an e=a very close to
that of Gum Metal, is comparable to the measured strength
of Gum Metal [16]: 1.8 GPa at 0 K (calculated) vs 1.8 GPa
at 77 K (measured).

However, if the tensile behavior of Gum Metal were like
that shown by the solid curves in Fig. 2(b) the alloy would
be brittle: The failure that intrudes on the tetragonal, Bain
strain path of a bcc crystal is in tension perpendicular to
f001g, and leads to the conventional f001g cleavage of bcc
metals [25]. But there is a second possible failure mecha-
nism for a bcc metal at its ideal strength in tension [10]: a
bcc metal may also fail by shear on planes that are angled
to �001�. If a bcc metal is to be ductile at its ideal strength,
it must fail in this alternate mode. As illustrated by the
dashed curves in Fig. 2(b), a bcc crystal that is strained
infinitesimally in the �001� direction in tension follows the
Bain path, with equal Poisson contractions in the �010� and
�100� directions. However, finite strain may result in a
deviation onto an orthorhombic strain path with different
perpendicular Poisson contractions. If the strain path
branches onto the orthorhombic path before the maximum
stress is reached, then the failure will ordinarily be in shear
[10]. Thus Ti-V alloys with less than 0.55 Ti (e=a > 4:45)
fail in shear when pulled in tension.

A useful alternative interpretation of shear failure at the
ideal strength can be based on the thermomechanical cri-
teria that govern elastic stability [5]. The limit of elastic
stability is reached when the least eigenvalue of the tensor
of effective elastic constants vanishes (the Wallace tensor).
The eigenvector conjugate to this eigenvalue determines
the direction of the failure in configuration space, i.e., the
mode of failure. In the present case examination of the
eigen solutions indicates that the failure mode is deter-
mined by the relative magnitudes of two elastic constants.
Specifically, when G001 <E001, the material fails in shear
even when pulled in tension.

Interestingly, the binary Ti-Valloy that is closest to Gum
Metal, Ti75V25, is predicted to fail in tension, and is,
therefore, not ideal. However, Gum Metal alloys are rich
in Nb, rather than V. The elastic constants of Ti75Nb25 have
been computed using a supercell method [22]. The pre-
dicted value of C44 (�14:9 GPa) is considerably smaller
than E001 (�19:2 GPa), indicating that Gum Metal alloys
are intrinsically ductile.

While these results clarify why Gum Metal fails in a
ductile mode at a moderate value of the ideal strength, we
still must understand why Gum Metal is so resistant to
deformation by dislocations.

Saito et al. report that the solute hardening effect of
oxygen, perhaps in the form of ZrO clusters [16], enables
the unique mechanical properties of Gum Metal to emerge

[18]. Consider, then, dislocation glide through a random
distribution of obstacles [26]. The critical resolved shear
stress �c for dislocation glide is [26]

 �c � �
�

2T
lb

�
�3=2
c (1)

where T is the line tension of the dislocation, l is the mean
distance between obstacles in the glide plane, b is the
Burgers’ vector of the dislocation, (�c is the dimensionless
strength of the obstacles, and � is a geometry dependent
prefactor (�� 0:9 for randomly distributed obstacles).
Assuming the obstacles to be impenetrable yields �c �
0:7, and writing the line tension in the form T � Kb2=2,
we have

 �c 	 0:53
�
K
l


�
; (2)

where l
 is the dimensionless obstacle spacing (l=b), andK
is the elastic energy factor for the dislocation.

If the resolved stress to move dislocations exceeds the
ideal shear strength of the material, dislocations will not
mediate plasticity. Dislocation mediated plasticity of bcc
metals and alloys is often controlled by the mobility of
dislocations in the f112g, f110g, and f123g planes. As
mentioned above, the ideal shear strength for shears in a
h111i direction parallel to the f112g plane is given by �m �
0:11G111, and this ideal strength is representative for the
ideal strength along the other potential slip planes. Thus
dislocation motion will not be possible if

 0:11G111 & 0:53
�
K
l


�
or l
 & 4:8

K
G111

� l
c: (3)

Here, l
c is defined as the dimensionless critical pinning
length. If the average (dimensionless) obstacle spacing in
the crystal is less than l
c, the dislocations will be pinned.

The low-temperature deformation of bcc metals is con-
trolled by the mobility of screw dislocations. The line
tension of a h111i screw dislocation was computed by
Head [27] employing the theory of Stroh [28]. Using this
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result, one finds that

 

Kscrew
111

G111
/

1���������������������
C11 � C12

p ; (4)

and

 

K
G111

/ �C11 � C12�
�1 (5)

for all the candidate nonscrew dislocations. Since C11 �
C12 ! 0 as e=a approaches the value associated with the
bcc to hcp transition, l
c diverges. Figure 3 plots computed
values of l
c as a function of e=a for the h111i screw
dislocation, and the edge dislocations in the f112g, f110g
and f123g slip planes. The l
c values for all of the considered
dislocations lie above the curve plotted for the h111i screw
dislocation.

The critical lengths plotted in Fig. 3 are insightful. The
divergence insures that for e=a sufficiently close the tran-
sition, one can introduce an obstacle density sufficient to
pin all dislocations, before the ideal shear strength of the
material drops to zero. Thus the tuning of the e=a ratio of
an intrinsically ductile alloy to be near the bcc to hcp
transition leads to a ductile material that is sufficiently
elastically anisotropic that one can introduce alloying ad-
ditions to pin the dislocations and suppress conventional-
dislocation mediated deformation.

This explanation of Gum Metal behavior presents sev-
eral exciting opportunities for materials theorists and met-
allurgists. First and foremost, since the mechanical
properties of these materials are linked to quantities that
can be computed directly using the best available quantum
mechanical based total energy methods, there is a genuine
opportunity for rapid, computer aided, advanced engineer-
ing of these alloys. Second, the explanation identifies the
bcc to hcp transition as a metallurgically useful transition.
Third, the criteria suggest how theory can be used to
identify other candidates for Gum Metal behavior: one
simply needs to compute the elastic constants and ideal
strengths of bcc/hcp alloys as a function of composition.
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