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Hamiltonian systems that locally violate the twist condition arise in many applications. Numerical
simulations reveal that, when systems of this type are perturbed, the degenerate or nontwist tori are
remarkably stable. This phenomenon, which we refer to as strong Kolmogorov-Arnold-Moser (KAM)
stability, is shown to be linked to very small resonance widths near degenerate tori. Quantitative estimates
of degenerate resonance widths are derived and bifurcations of degenerate resonances are described.
Strong KAM stability leads to robust transport barriers, which are important in all of the many
applications in which Hamilitonians with the nontwist property arise.
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The work reported here was motivated by a desire to
understand the mechanism by which ozone-depleted air is
trapped within the ozone hole [1]. In that problem the
atmospheric flow is assumed to be two dimensional and
incompressible. The fluid parcel trajectory equations of
motion then have Hamiltonian form. After transforming
to action-angle (I, �) variables the essential ingredients of
the ozone hole problem are the following. The Hamiltonian
H�I; �; t� can be decomposed as

 H�I; �; t� � H0�I� � "H1�I; �; �t� (1)

where H1 is 2�=� periodic in t. Each unperturbed (" � 0)
torus is labeled by its action I; the corresponding frequency
is !�I� � dH0=dI � H00�I�. Under perturbation, at the
perimeter of the ozone hole there is a thin band of very
robust invariant tori in the vicinity of the torus that violates
the twist or nondegenerate property !0�I� � 0. These in-
variant tori serve as a transport barrier between the interior
and exterior of the ozone hole. The ozone hole problem
will not be further discussed here. Rather, we consider the
generic problem defined by Eq. (1) focusing on the stabil-
ity of degenerate tori, i.e., tori that satisfy !0�I� � 0. We
focus on the generic Hamiltonian problem because the
same problem arises in many applications including simple
mechanical systems [2], charged particle dynamics in
magnetic fields [3], celestial dynamics [4], stellar pulsa-
tions [5], plasma physics [6], underwater acoustics [7], and
transport and mixing in the ocean and atmosphere [1,8].
We show that, owing to small resonance widths near de-
generate tori under perturbation, robust transport barriers
are found near such tori under typical conditions. The
resulting transport barriers are important in all of the
applications mentioned.

The technical results presented below can be summa-
rized as follows. The KAM (Kolmogorov-Arnold-Moser)
theorem [9–11] guarantees that, provided certain condi-
tions are met, many of the unperturbed tori associated with
the system described by H0�I� survive under perturbation.
Torus destruction is caused by the excitation of resonances
when the ratio of the frequency !�I� of the motion on the

unperturbed torus to the forcing frequency � is rational.
Associated with each resonance is a characteristic width.
Resonance widths are important because overlapping reso-
nances lead to the destruction of the unperturbed tori with I
values between those of the resonant tori [12–14]. All
variants of the KAM theorem [9–11] require that a non-
degeneracy condition be satisfied. The simplest such con-
dition, due originally to Kolmogorov [9], is !0�I� � 0.
This condition guarantees that for sufficiently small "
resonances are isolated. Nondegenerate resonance widths
scale like �!� "1=2. The Rüssmann [10] form of the
KAM theorem employs a weaker nondegeneracy condi-
tion. Transforming (1) to an autonomous 2 degree-of-
freedom system reveals [1] that the Rüssmann nondege-
neracy condition is satisfied in domains that include points
where !0�I� � 0, i.e., that are degenerate in the
Kolmogorov sense. Related results for area-preserving
maps are discussed in [15]. We show below that the degen-
erate resonance widths scale like �!� "j=�j�1� where j �
2; 3; . . . is the number of nondegenerate resonances that
coalesce at the degenerate point. We refer to j below as the
order of the degeneracy. For small " degenerate resonance
widths are generally smaller than nondegenerate resonant
widths. This leads to the phenomenon that we refer to as
‘‘strong KAM stability’’ and very robust transport barriers.
An example will be given below.

Mathematical details underlying the phenomenon of
strong KAM stability will now be given. Consider a sys-
tem described by Eq. (1) where I and � evolve according to
_I � �@H=@�, _� � @H=@I. The perturbation H1�I; �; �t�
is 2� periodic in � and 2�=� periodic in t, so H1 can
be expanded in a Fourier series, H1�I; �; �t� �P
1
m;n��1 Vnm�I� cos�n��m�t��nm� where the �nm’s

are phases. The equations of motion are

 

_I � "
X1

m;n��1

nVnm�I� sin�n��m�t��nm�; (2)

 

_��!�I��"
X1

m;n��1

nV0nm�I�cos�n��m�t��nm�: (3)
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In the " � 0 limit, solutions are I�t� � const, ��t� �
const�!�I�t, and the motion is periodic. Let !�j��I0�
denote the jth derivative of !�I� at I � I0. In anticipation
of our analysis of a jth order degeneracy, we shall assume
that !�I� satisfies !�j�1��I0� � 0, !�j��I0� � 0 for some
integer j � 2 and some I0 in the I domain of interest. Also,
we assume that " is small and � is an adjustable parameter
that is close to the value �0 at which the resonance condi-
tion n!�I0� � m�0 is satisfied. Following [13,16], the
oscillating nonresonant terms in Eqs. (2) and (3) will be
omitted and Vnm�I� will be replaced by the resonant value
Vnm�I0� in the approximate analysis that follows. Let  �
n��m�t��nm corresponding to the resonant (n, m)
pair. Then, noting that _ � n _��m�, and expanding
!�I� in a Taylor series about I0, with �I � I � I0, yields
the following approximate autonomous system in the vi-
cinity of the resonant level:

 � _I � "nVnm�I0� sin ; (4)
 

_ � n
�
!�I0� �!

0�I0��I � 	 	 	 �!
�j�2��I0�

��I�j�2

�j� 2�!

�!�j��I0�
��I�j

j!

�
�m�: (5)

An O�"� term in Eq. (5) has been omitted. The justifi-
cation for this is that it will be shown below [Eq. (10)]
that �I scales like "1=�j�1�. For convenience we intro-
duce the notation �i � !�i��I0�=i!, i � 0; 1; . . . ; j� 2.
Equations (4) and (5) define a Hamiltonian system

 � _I � �@ ~H=@ ; _ � @ ~H=@�I; (6)
with Hamiltonian
 

~H��I; ��n
�

�0�I��1
��I�2

2
�			�!�j��I0�

��I�j�1

�j�1�!

�

�m��I�"nVnm�I0�cos : (7)
Consistent with Eq. (7) is the expansion
 

!��I; �� � �0 ��1�I � 	 	 	 ��j�2��I�j�2

�!�j��I0�
��I�j

j!
: (8)

In the following we will consider separately (1) degenerate
reonance widths and (2) bifurcations of degenerate
resonances.

First, we estimate the width of a degenerate resonance of
order j. At such a resonance � � �0 �

n
m�0 and �1 �

�2 � . . . � �j�2 � 0, so the Hamiltonian (7) reduces to

 

~H��I;  � � n!�j��I0�
��I�j�1

�j� 1�!
� "nVnm�I0� cos : (9)

Level surfaces of ~H in the phase plane (�I,  ) have
qualitatively different features depending on whether j is
odd or even. An example of each type is shown in Fig. 1. In
these systems trajectories are divided by a separatrix into
two types: trajectories trapped in the resonance region and
trajectories external to the resonance region. It is natural to
define the resonance width as the width of the trapped

region. This is the maximum �I excursion of the separa-
trix,

 �I �
�
2"jVnm�I0�j�j� 1�!

j!�j��I0�j

�
1=�j�1�

: (10)

The corresponding frequency width is

 �! � j!�j��I0�j
��I�j

j!

� j!�j��I0�j
1=�j�1� �2"jVnm�I0�j�j� 1�!�1=�j�1�

j!
: (11)

Although our focus is on degenerate (j � 2) resonance
widths, Eqs. (10) and (11) apply to the nondegenerate
case j � 1 as well. The " scaling associated with �I,
Eq. (10), was previously derived [17] using different argu-
ments. Our focus is on �!, Eq. (11), as this width controls
whether neighboring resonances overlap [12–15].
Number-theoretic issues relating to n and m (the degree
of rationality of n=m) are well known [18] and will not be
discussed here.

The scaling �!� "j=�j�1� predicted by Eq. (11) leads,
when " is small and j is large, to small resonance widths
and strong KAM stability, as illustrated using j � 2 in
Fig. 2. In that figure, Poincaré sections for two systems
with H�I; �; t� � H0�I� � "H1�I; �; �t� are shown. The
structure and strength of the perturbation term
"H1�I; �; �t� is the same in both cases, but H0�I� is not.
In one case !�I� is linear. In the other case !�I� is cubic
and there are two isolated j � 2 degeneracies. The same
!�I� domain is present for both choices of H0�I�, so the
same resonances are excited in both cases. The resonance
widths are different, however, and, consistent with

 

δI

ψ

(b)

δI

ψ

(a)

FIG. 1. Level surfaces of ~H��I;  � defined by Eq. (9) in the
phase plane ( , �I) for j � 2 (a) and j � 3 (b).
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FIG. 2. Frequency structure !�I� and the corresponding
Poincaré section for the system with Hamiltonian H0�I� �
"H1�I; �; �t� for two choices of H0�I�: (a) linear !�I�;
(b) cubic !�I�. In both cases " � 0:026 and H1�I; �; �t� �P19
i�1 cos��it� cos�I � ��, where the 19 forcing frequencies are

commensurable and lie in the ! domain plotted.
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Eq. (11), this leads to strong stability of the tori in the
vicinity of the degenerate tori in the system with cubic
!�I�.

We now consider bifurcations of degenerate resonances.
� and �i, i � 1; 2; . . . ; j� 2, will now be treated as ad-
justable parameters. In contrast, we shall assume that
!�j��I� has no zeros in the domain of interest and treat
!�j��I0� as a constant rather than an adjustable parameter.
This assumption allows us to approximate !�I� as a finite
order polynomial; other, more rigorous, arguments can be
used to justify the same approximation [19]. The resonance
condition can be written!��I; �� � m

n � and the condition
defining a degenerate resonance is @!��I; ��=@�I � 0.
(A partial derivative is used here to emphasize that the �i’s
are held constant when the derivative is taken.) Together
with Eq. (11) these two conditions define Legendre singu-
larities [19,20] in the (j� 1)-dimensional control parame-
ter space ��0 �

m
n �;�1; . . . ;�j�2�. These singularities

belong to the cuspoid family and have well-known forms
(fold for j � 2, cusp for j � 3, swallowtail for j � 4, etc.).
The singular structure associated with the fold and cusp in
control parameter space and selected associated forms of
!��I; �� are shown in Fig. 3. Note that j is the number of
nondegenerate resonances that coalesce at the point � �
�0 �

n
m�0, �1 � �2 � . . . � �j�2 � 0. Additional nu-

merical simulations based on the fold (j � 2) are provided
below; extensions to higher dimensional structures (j �
3; 4; . . . ) are straightforward. Two points regarding bifur-
cations of degenerate resonances should be emphasized.
First, in control parameter space high order structures
unfold into a configuration of lower order structures; the
cusp unfolds into two fold lines, for example. Second,
structural stability of a jth order degeneracy requires that
it reside in a control parameter space of dimension j� 1 or
higher. This implies, for instance, that an experimental
apparatus designed to generate a jth order degeneracy

must in general have j� 1 controls. [Structurally unstable
problems sometimes arise in applications. Motion in the
structurally unstable system corresponding to (1) with
H0�I� � !0I, !�I� � !0 � const, has been extensively
studied [3,21]. ]

Associated with the singular structures (Legendre
singularities) in control parameter space ��0 �

m
n �;

�1; . . . ;�j�2� are bifurcations in the phase plane ��I;  �.
Consider the simplest degenerate case corresponding to the
fold. For this system!��I; �� and ~H��I;  � are defined by
Eqs. (7) and (8), respectively, with j � 2. The set of
singular (degenerate) points that satisfy !��I; �0� �
m
n �, @!��I; �0�=@�I � 0 is the point mn � � �0 or � �
�0, as indicated in Fig. 3. Level surfaces of ~H��I;  � in the
phase plane for this system using five different values of
the forcing frequency � that span the degenerate value �0

are shown in Fig. 4. For simplicity we have chosen to focus
on the n � m � 1 resonance in this figure. Assuming
!�2��I0�> 0, as shown in Fig. 3 (left), two resonances are
excited when the forcing frequency �> �0 � �0. For
large �� �0 two nonoverlaping resonances are present
[Fig. 4(a)]. At a critical value of �> �0, a reconnection of
separatrices takes place [Fig. 4(b)]; at this critical value
two hyperbolic heteroclinic chains [Fig. 4(a)] are trans-
formed to two hyperbolic homoclinic chains [Fig. 4(c)].
When the forcing frequency � reaches the value �0 the
degenerate resonance is excited [Fig. 4(d)]. For�< �0 the
1:1 resonance is not excited [Fig. 4(e)]. Related results for
both the fold and the cusp are presented in [22].

The preceding analysis is based on the approximate
autonomous system (6) and (7). We now demonstrate the
validity of this approximate analysis by showing that its
predictions are in good agreement with simulations based
on the nonautonomous system (1). For this purpose we
consider the nonautonomous system H�I; �; �t� � sinI �
I � " cos��t� cos� for which H0�I� � sinI � I has a
second-order (j � 2) degeneracy at I0 � 0. In response
to the periodic forcing some resonances are excited. In
Fig. 5 the forcing frequency � is chosen to be close to that
of the frequency of the degenerate torus !�I0� � �0 � 2,
so that the 1:1 resonance is excited. Gradually increasing
the forcing frequency from � � 1:3 (corresponding to two
nondegenerate resonances far away from the degenerate
level) to � � 2 (exact degenerate resonance of second
order), results in the excitation of resonances closer and 

ωω

ωω

Ω0 − m
n σ

Ω1

ω

ω

ω

I

0

Ω0 − m
n σ

δ

Iδ Iδ

Iδ Iδ

Iδ

Iδ

FIG. 3. Legendre singularities in the (j� 1)-dimensional con-
trol parameter space and, at selected locations in that space,
associated intersections of the line m� � n! with the curve
!��I; ��: (left) fold, j � 2; (right) cusp, j � 3. Open circles
identify excited degenerate resonances.

 

(e)

ψ

(d)(c)(b)(a)

FIG. 4. Level surfaces of ~H��I;  � defined by Eq. (7) with j �
2, !�2��I0�> 0, n � m � 1, for five choices of �, decreasing
montonically from (a) to (e). In (a), (b), and (c) �>�0; in
(d) � � �0; in (e) �<�0.
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closer to the degenerate level. A further increase of the
forcing frequency results in the nonexcitation of the domi-
nant 1:1 resonance. Although, for each choice of �, many
resonances are excited, the dominant resonance is the 1:1
resonance, and good agreement between this figure and
Fig. 4 is seen. Because Fig. 5 does not make use of any of
the approximations we have introduced, the good quali-
tative agreement between Figs. 4 and 5 serves to illustrate
the validity of the approximate analysis that we have made
use of.

In this Letter we have shown that resonance widths �!
in the vicinity of degenerate tori are generally narrower
than those in the vicinity of nondegenerate tori. Although
noninvertibility of the frequency map !�I� leads to diffi-
culties in the proof of the KAM theorem (that Rüssmann
[10] has overcome), we have encountered no such diffi-
culties because at locations where !0�I� has isolated zeros
both �I and �! are well defined. As a result of generally
small resonance widths �! near degenerate tori, reso-
nances near degenerate tori are less likely to overlap, and
tori in the vicinity of degenerate tori are generally more
stable than those in the vicinity of nondegenerate tori. We
have referred to this phenomenon as strong KAM stability.
Tori that survive under perturbation serve as transport
barriers. Owing to strong KAM stability, degenerate tori
are associated with robust transport barriers. Bifurcations
of degeneracies have been described. Numerical simula-
tions, including but not limited to those presented in Figs. 2
and 5, support the analysis that we have presented and
illustrate the importance of strong KAM stability and the
associated robust transport barriers.
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FIG. 5. Poincaré sections for the system described by Eq. (1)
with H0�I� � I � sinI, H1�I; �; �t� � cos��t� cos�, " � 0:5, for
five choices of �: (a) � � 1:3; (b) � � 1:6; (c) � � 1:79;
(d) � � 2:0; (e) � � 2:23.
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