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We investigate the spatiotemporal dynamics of a large array of laser oscillators. The oscillators are
locally coupled and their natural frequencies are randomly detuned. We show that synchronization of the
array elements results in localized excitations wandering along well-defined trajectories.
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The study of coupled nonlinear oscillators [1] provides
insight to many complex phenomena observed in diverse
natural and technological systems ranging from coupled
neurons [2], arrays of Josephson junctions [3], and lasers
[4,5]. The universal aspect of the synchronization of such
arrays of oscillators can be explored in the combined
perspectives of networks and nonlinear dynamics [6–10].
Investigations often aim at finding the conditions under
which homogeneous states made of synchronized oscilla-
tors do appear and how spatial disorder in arrays of chaotic
oscillators does induce regular patterns [11,12].

In this Letter, we examine two-dimensional arrays of
locally-coupled laser oscillators with a random distribution
of their natural optical frequencies. We show that collective
dynamics results in the emergence of localized excitations.
Unexpected in the presence of spatial randomness with
large distribution widths, these coherent structures made
of firing lasers wander along well-defined paths and can
even rotate around periodic trajectories.

The formation of long-lived localized excitations is
experimentally observed in very different physical sys-
tems—electrostatic oscillons on plasma-vacuum inter-
faces [13], oscillons in granular media [14], excitations
in gas discharges [15,16], solitons on the surface of mag-
netic fluids [17], cavity solitons in nonlinear optics [18–
21], as well as localized vegetation patches in ecosystems
[22,23]. The nature of the interaction between neighboring
spatial elements and the mechanisms for creation of local-
ized excitations are obviously very different in each case.
The discrete system considered in the following consists
of a square array of N � 2500 (50� 50) nonlinear laser
oscillators. It can be realized with existing technology as
shown in [24], although with a much smaller prototype. It
is of interest for practical applications such as high-optical
power emission. Indeed, the divergence of the overall beam
emitted by an array of phase-locked lasers is strongly
reduced, and the peak intensity resulting from the coherent
superposition of the laser beams can scale as N2 times the
individual laser output (see Ref. [25] for an overview on
this topic and Ref. [26] for the system considered here).
The lasers are randomly detuned as would be the case in
any experimental realization. The coupling is local and
homogeneous: each elementary oscillator is coupled to

its direct neighbors only and with an intensity that is not
related to its position within the array. These features do
not only simplify the numerical computation and the analy-
sis of the results. They correspond also to experimental
reality to a good approximation [24]. The system possesses
dynamical variables with widely different time scales as
well as controllable mechanisms for excitation and dissi-
pation. Moreover, the coupling rate between neighboring
elements may be varied over several orders. The equations
for the slowly varying complex amplitudes Ei;j of the
electric fields inside the lasers and the equations for the
corresponding population inversions Gi;j are
 

dEi;j
dt
��Gi;j�1�Ei;j���Ei�1;j�Ei�1;j�Ei;j�1�Ei;j�1�

� i!i;jEi;j (1)

 

dGi;j

dt
� ��p�Gi;j �Gi;jjEi;jj

2�; (2)

where 1< i, j <M with M � 50.
The dimensionless time t and the population inversion

decay time ��1 are measured in units of the field decay
time. p is the pump coefficient. � is the normalized cou-
pling rate between neighboring lasers. The normalized
angular frequency !i;j measures the detuning of laser i, j
from a common reference. Since the array extension is
finite, lasers located on the boundary of the array are
coupled to two or three neighbors, and the average inten-
sity of their output is lower than the others. We point out
that localized excitations can also be observed with peri-
odic boundary conditions. In both cases, the array must be
large enough to allow their generation. We assume a
Gaussian detuning frequency distribution in the laser array,
the other parameters being identical. The intensity of the
light emitted by each laser (proportional to jEi;jj2) is sta-
tionary in the absence of detuning while detuned, the lasers
can be driven unstable depending on the coupling rate [27]:
if the interaction between lasers is weak, the individual
optical phases are completely unlocked, and the laser in-
tensities barely oscillate; however, if coupling is stronger
than the so-called phase-locking threshold (see additional
information in the auxiliary material to this Letter [28]; see
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also Auxiliary Fig. 1), the lasers can operate in a state
where the output intensities are constant and the optical
phases perfectly locked. We have integrated Eqs. (1) and
(2) by using a fourth order Runge-Kutta algorithm. We
have used parameter values that are typical of solid-state
lasers, namely p � 2 and ��1 � 1:2� 104. For these
values, the angular frequency of the relaxation oscillation
[29] of an uncoupled laser is !R � 2�� 2:06� 10�3,
with !R � �2��p� 1��1=2. The detunings !i;j are chosen
from a normal random distribution with mean zero. The
distribution is generated by the randn MATLAB function
for a given state of the generator. In most of the present
Letter, the state of the generator is set to 1, the distribution
standard deviation is �! � 2�� 5� 10�3, and the cou-
pling rate ranges from moderate (i.e. strong enough to
induce pulse dynamics) to values comparable to the
phase-locking threshold. In most of this range, the array
elements exhibit chaotic dynamics. Despite its simplicity,
the model has been found to reproduce power-law spatial
synchronization experimentally observed with small arrays
[24].

For moderate coupling, the laser intensities display
weakly synchronized chaotic trains of pulses with ampli-
tudes and frequencies very different between neighboring
elements. The patterns of the laser intensities are thus
characterized by a large number of local maxima and the
absence of continuity [Fig. 1(a) and movie no. 1 in
Ref. [28]]. For increasing coupling rates, the laser intensity
oscillations slow down, and their mean frequencies get
closer. In addition, the offset between phase and amplitude
of neighbors decreases. As a result of synchronization over
an increasing spatial range, the number of local maxima
decreases rapidly [Fig. 2(a)], and the patterns gradually
acquire spatial continuity. Figure 1(b) and movie no. 2 in
Ref. [28] provide an example of the dynamics for an
intermediate value of �. The laser behavior depends

more and more on their location in the lattice as the
coupling rate gets closer and closer to the phase-locking
threshold. On the array scale, the collective dynamics
results in the emergence of a few spatially localized ex-
citations made of momentarily firing lasers [Fig. 1(c) and
movie no. 3 in Ref. [28]]. These excitations remain during
long periods and move over large distances across a weakly
oscillating background. They can directly emerge from this
background or result from the splitting of previous excita-
tions. Two excitations can also collide.

The pattern spatial coherence is estimated by computing
the time-averaged full width at half maximum of the two-
dimensional autocorrelation function. This function char-
acterizes the extent to which oscillators separated by a
given distance oscillate in unison at a given time (the
Auxiliary Figures 2 (a–c) in Ref. [28] present this function
calculated for three different patterns). Figure 2(b) displays
the mean correlation length of the patterns with respect to
the coupling rate. Comparison with Fig. 2(a) shows how
the increase of the correlation length is associated with the
reduction of the number of local maxima and therefore
with the gradual organization of the firing lasers in a few
spatially localized excitations. For the lowest value of the
coupling rate considered, the correlation length is smaller
than 2 array sites, and the mean number of maxima is over
60, revealing the almost free motion of the oscillators. As
the coupling increases, the correlation length and the num-
ber of maxima, respectively, increase and decrease rapidly:
the spatial continuity of the patterns improves and finally
saturates. Just below the phase-locking threshold, the num-
ber of excitations is less than 1.5 on average, and the
correlation length of the patterns is over 10 array sites,
indicating a long-range spatial synchronization.

The progressive synchronization of the lasers also af-
fects the velocity of the excitations across the array: the
mean velocity of the pattern maxima increases with the

 

FIG. 1 (color online). Snapshots of intensity patterns at nine consecutive time steps over two relaxation oscillation periods of an
uncoupled laser for three different values of the coupling rate, namely � � 3:6� 10�3 (a), 1:6� 10�2 (b), and 7� 10�2 (c). The
snapshots corresponding to � � 7� 10�2 show the appearance of a localized excitation (ii) that splits into two new excitations (iii).
Those travel across the array (iv–vi) and finally collide (vii) and fade (viii).
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coupling rate and progressively saturates [Fig. 2(c)] simi-
larly to the correlation length. Figure 2(d) reveals an almost
linear relationship between the correlation length and the
excitation mean velocity; thus, both features benefit simi-
larly from the long-range spatiotemporal synchronization
between the lasers.

Close to the phase-locking threshold, the dynamics of
the array elements is still aperiodic and the trajectories of
the excitations in the array cannot be anticipated on a long-
term basis. It is however apparent from their observation
over long periods that they have a strong propensity to
follow a few well-defined paths (see movie no. 3 in
Ref. [28]). In order to substantiate this qualitative obser-
vation, we have computed a histogram of the trajectories of
each localized excitation by recording the number of times
they visit the different cells of the array over 500 relaxation
oscillation periods of an uncoupled laser. The histogram
displayed in Fig. 3(a) shows that a large part of the lattice is
never visited. The most visited cells form a ring. The
localized excitations are typically generated in the darker
zones of the histogram located on the top of the ring and
generally follow either the left part of the ring anticlock-
wise or the right part clockwise. From time to time, the
excitations also follow two other paths that lead toward the
array boundaries close to which they decrease in amplitude
and finally blend in with the background fluctuations. On
occasion, the excitations can escape from the most likely
paths but, after what looks like a short hesitancy, move
back toward these corridors.

Although there is no obvious relationship between the
layout of the trajectories and the distribution of the detun-
ing shown in Fig. 3(b), different realizations of the distri-
bution lead to completely different layouts. As a first
example, Figs. 3(c) and 3(d) compare the trajectory layout
and the detuning distribution when the state of the random
generator is set to 2. In this case, the laser dynamics is
periodic. The lasers located in a corner of the array exhibit
large fluctuations, and a single localized excitation forms
close to this region, moves toward the central part of the
array, and then turns left and finally evaporates on an edge
(see movie no. 4 in Ref. [28]). In Figs. 3(e) and 3(f), the
state of the generator is again set to 1, but the standard
deviation and the coupling are reduced. One now observes
a unique excitation periodically rotating around a closed
trajectory (see movie no. 5 in Ref. [28]). Again, there is
apparently no relationship between this trajectory and the
spatial distribution of the detuning. Multiple numerical

 

FIG. 3 (color online). (a) Histogram showing the number of
times each site of the array is visited by the peak of a localized
excitation for � � 7� 10�2. (b) Realization of a normal random
distribution with mean zero and standard deviation of �! �
2�� 5� 10�3. The realization is generated by the randn
MATLAB function. The state of the random generator was set
to 1. (c) and (d): same as in (a) and (b), but the state of the
random generator was set to 2. (e) and (f): same as in (a) and (b),
but with �! � 2�� 2:76� 10�3 and � � 6:2� 10�2. The
histograms have been averaged over 5 time series. The duration
of each series corresponds to 500 periods of the relaxation
oscillations of an uncoupled laser.

 

FIG. 2. Mean number of clusters made of firing lasers (a),
mean correlation length of the intensity patterns (b), and mean
velocity of the clusters across the laser array (c) as functions of
the coupling rate, �. Mean velocity of the clusters versus the
mean correlation length of the intensity patterns (d). The mean
numbers of clusters and their mean velocities are calculated from
the same five time series, each of duration equivalent to 30
relaxation oscillation periods of an uncoupled laser. The mean
correlation lengths of the patterns are calculated from five time
series of duration equivalent to ten relaxation oscillation periods.
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simulations reveal that in every case, the trajectory layout
is robust to slight (of the order of a few percents) random
modifications of the laser detuning and to a few array
defects. The most visited paths are best defined for large
coupling. For decreasing coupling rate, the histograms
fade, the number of paths increases, and the excitation
trajectories cover the array in a more and more homoge-
neous manner; at the same time, the firing lasers are less
localized as the whole array fluctuates strongly.

In summary, localized excitations wandering along well-
defined trajectories can emerge in spatially disordered
arrays of laser oscillators. They are an unexpected conse-
quence of spatial synchronization that progressively takes
place when the interaction between the array elements
increases. The simplicity of the model suggests that
synchronization-induced localized excitations should take
place in a wide variety of natural and laboratory systems
where spatial randomness is also unavoidable. The com-
parison with pacemaker models that assume locally-
coupled firing cells with random detuning of their natural
oscillation frequencies deserves discussion. Indeed, to the
best of our knowledge, the firing of cells appears as spread-
ing waves [30] instead of localized excitations. We think
that this is due to the intrinsic features of the cells that,
contrary to the laser oscillators, already fire periodically in
the absence of coupling. When coupled, spreading waves
are generated as the excitation of a cell triggers the exci-
tation of the following ones [30]. In the system here under
study, firing requires interaction between lasers.
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