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We develop a general theory of the quantum vacuum radiation generated by an arbitrary time
modulation of the vacuum Rabi frequency of an intersubband transition in a doped quantum well system
embedded in a planar microcavity. Both nonradiative and radiative losses are included within an input-
output quantum Langevin framework. The intensity and the spectral signatures of the extra-cavity
emission are characterized versus the modulation properties. For realistic parameters, the photon pair
emission is predicted to largely exceed the blackbody radiation in the mid and far infrared. For strong and
resonant modulation a parametric oscillation regime is achievable.
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The radiation generated by a time modulation of the
quantum vacuum is a fascinating phenomenon, predicted
to occur in a variety of physical systems ranging from
nonuniformly accelerated boundaries (dynamical Casimir
effect [1,2] ) to semiconductors with rapidly changing
dielectric properties [3]. These quantum vacuum phe-
nomena have some analogies with the Unruh-Hawking
radiation [4] in the curved space-time around a black
hole. Recent years have seen the appearance of a number
of proposals to enhance the quantum vacuum radiation,
exploiting, e.g., high-finesse Fabry-Pérot resonators [5], a
time modulation of the dielectric constant of a cavity [6],
or the reflectivity change induced by photogenerated car-
riers in a semiconducting mirror [7]. Still, the very weak
intensity of the radiation has so far hindered its experimen-
tal observation.

Planar semiconductor microcavities embedding a doped
multiple quantum well structure have recently attracted a
considerable interest. As shown by several experiments in
the midinfrared range [8–13], the strong coupling between
a cavity mode and the electronic transition between the first
two quantum well subbands results in an elementary exci-
tation spectrum consisting of intersubband polaritons, i.e.,
linear superpositions of cavity-photon and intersubband
excitation states. The most interesting property of these
systems from the point of view of the quantum vacuum
radiation resides in the large value of the vacuum Rabi
frequency �R, which can be as high as a significant frac-
tion of the intersubband transition frequency !12 [14]. In
this unusual ultrastrong coupling regime [14,15], the anti-
resonant terms of the light-matter coupling play an impor-
tant role. The ground state of the system is a squeezed
vacuum containing correlated pairs of cavity photons. The
photon pairs in the ground state are, however, virtual and
cannot escape the cavity if its parameters are time inde-
pendent [15].

In order to release these bound photons into extra-cavity
radiation, the quantum vacuum has to be modulated in
time. The recent experimental demonstration of a wide
tunability of the cavity parameters (in particular, of the
vacuum Rabi frequency �R [10] ) via a gate bias and the
possibility of ultrafast modulation [12] makes the present
system a promising one for the observation of quantum
vacuum radiation. A first theoretical study for an isolated
cavity [14] has suggested that a nonadiabatic switch-off of
�R results in a significant number of photon pairs being
emitted from the cavity. A general theory able to include
the effect of losses for arbitrary time dependences is,
however, still missing, as well as a characterization of the
spectral signatures of the radiation. In this Letter, we
address these fundamental issues by developing a theory
of the quantum vacuum radiation for an arbitrary modula-
tion of the microcavity properties. The extra-cavity emis-
sion is calculated for the most promising case of a periodic
modulation of �R by means of the generalized input-
output formalism [15]: remarkably, the emitted quantum
vacuum radiation turns out to be much stronger than the
radiation by spurious effects such as black body emission.
Furthermore, instability regions in which the vacuum
modulation produces a parametric oscillation of the cavity
field are identified and shown to be within experimental
reach.

A theoretical description of the system can be obtained
by means of the formalism developed in [14,15]. The
photon mode in the planar microcavity and the bright
intersubband excitation of the doped quantum well system
(see Fig. 1) are described as two bosonic fields. Given the
translational symmetry of the system along the cavity
plane, the in-plane wave vector k is a good quantum
number. The creation operators for, respectively, a cavity
photon and an electronic excitation of wave vector k are
denoted by âyk and b̂yk. !c;k is the in-plane dispersion
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relation of the cavity-photon, while the frequency !12

of the intersubband excitation is taken dispersionless.
As explained in detail in Ref. [14], the electric-dipole
coupling between one cavity photon and one bright exci-
tation is quantified by the vacuum Rabi frequency �R;k ��������������������������������������������������
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, where Leff
cav and �1 are the ef-

fective length and dielectric constant of the cavity, �el the
two-dimensional electron density, Neff

QW the effective num-
ber of wells, f12 the oscillator strength of the intersubband
transition, and � the intracavity photon propagation angle
such that sin� � ck=�!12

������
�1
p
�. The quantum Hamiltonian

of the cavity system reads

 H � 1
2v̂
y
k�Mkv̂k (1)

being � � diag�1; 1;�1;�1� a diagonal metric, v̂k �

�âk; b̂k; â
y
�k; b̂

y
�k�

T a column vector, and Mk the
Hopfield-Bogoliubov matrix:
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For a quantum well, Dk ’ �2
R;k=!12 [14]. The ultrastrong

coupling regime corresponds to �R;k comparable to !c;k
and !12. In this regime, a central role is played by the
antiresonant light-matter coupling terms given by the
off-diagonal (1,3), (1,4), (2,3), (2,4) terms of Mk which
are responsible for the squeezed vacuum [16] nature of
the ground state. In the following, a general time depen-
dence of the Rabi frequency is considered: �R;k�t� �
��R;k ��mod

R;k �t� and Dk�t� � �Dk �D
mod
k �t�.

Nonradiative as well as radiative losses will be taken
into account by means of the generalized input-output
formalism developed in [15]: the system is in interaction
with two baths of harmonic oscillators, producing dissipa-
tion and fluctuations of the cavity-photon and electronic
polarization fields. The radiative and nonradiative complex
damping rates are denoted by ~�c;k�!� and ~�12;k�!�. The
real part (zero for !< 0 [15] ) quantifies the losses, while
the imaginary part is the Lamb shift of the mode. The
resulting Langevin equations are conveniently written in
frequency space as the vector equation:
 Z �1
�1

d!0� �Mk;!��!�!0� �Mmod
k;!�!0 �~vk�!0� � �i ~F k;

(2)

where ~vk�!� is the Fourier transform of the operator vector
v̂k�t� and the quantum Langevin operator vector

 

~F k � � ~Fc;k�!�; ~F12;k�!�; ~Fyc;�k��!�; ~Fy12;�k��!��
T

takes into account the quantum fluctuations. The time-
independent properties of the system are included in
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while Mmod
k;! describes the time modulation. For a time-dependent �R;k�t�, this has the form:
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where ~�mod
R;k;! and ~Dmod

k;! are the Fourier transforms of,
respectively, �mod

R;k �t� and Dmod
k �t�.

The exact solution of (2) is given by

 ~v k�!� � �i
Z 1
�1

d!0Gk�!;!0� ~F k�!0�; (3)

where Gk�!;!
0� is the inverse of Mk�!;!

0� �
�Mk;!0��!�!0� �Mmod

k;!�!0 , i.e.,
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Using the input-output scheme [15], we get the spec-
tral density of emitted extra-cavity photons Sout

k �!� as
a function of the input Sin

k �!� and the Langevin forces
~F k:

 

FIG. 1 (color online). Top: a sketch of the considered semi-
conductor planar microcavity system. Bottom: a scheme of the
quantum model.
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If one is interested in the quantum vacuum radiation due to the time modulation of the cavity parameters, a vacuum state
has to be considered for the input state, so that hSin

k �!�i � 0, and the fluctuating quantum Langevin forces (j, j0 2 fc; 12g)
are such that:

 h ~Fj;k�!� ~F
y
j0;k0 �!

0�i � 4���!�!0��jj0<�~�j;k�!���k;k0 ; h ~Fyj;k�!� ~Fj0;k0 �!
0�i � h ~Fj;k�!� ~Fj0;k0 �!0�i � 0: (5)

Therefore, only the last term of (4) contributes to the vacuum radiation. After some algebra, we get:

 hSout
k �!�i � 4<�~�c;k�!��

Z 1
0
d!0fj �G13

k �!;�!
0�j2<�~�c;k�!0�� � j �G

14
k �!;�!

0�j2<�~�12;k�!0��g: (6)

The total number of emitted photons with in-plane wave
vector k is given by Nout

k �
R
1
�1hS

out
k �!�id!. In the ab-

sence of antiresonant couplings in (1), �G13
k �

�G14
k � 0

giving a vanishing emitted radiation.
This general theory can be used for an arbitrary time

modulation of the cavity and for arbitrary frequency-
dependent losses. Here, we will focus on the case of a
periodic modulation of the vacuum Rabi frequency, i.e.,
�mod
R;k �t� � ��R;k cos�!modt�. If the modulation frequency

is resonant with the cavity modes, one expects [5] that the
quantum vacuum radiation can be strongly enhanced as
compared to the case of a single sudden change of �R;k
discussed in [14]. In the stationary state, the relevant
quantity is the rate of emitted photons dNout

k =dt.
Predictions for the rate dNout

k =dt (in units of !12) versus
!mod are shown in the top panel of Fig. 2 for the resonant
case !12 � !c;k � 2Dk for which the emission is the
strongest. Because of the ultrastrong coupling regime, the
emission intensity has a moderate k dependence, remain-
ing significant over the anticrossing region. A simplified
constant damping rate has been considered <f~�c;k�!>
0�g � <f~�12;k�!> 0�g � �, and the imaginary part has
been consistently determined via the Kramers-Kronig re-
lations [15]. Values inspired from recent experiments
[8,10,12] have been used. The structures in the integrated
spectrum shown in the top panel of Fig. 2 can be identified
as resonance peaks when the modulation is phase matched.
As usual for parametric processes [16], the creation of pairs
of real polaritons by the vacuum modulation is indeed
resonantly enhanced when the phase-matching condition
r!mod � !j;k �!j0;�k is fulfilled, r being a generic posi-
tive integer number, and j, j0 2 fLP;UPg. The dominant
features A, B, C are the three lowest-order r � 1 peaks
corresponding to the processes where either two lower
polaritons (LPs), or one LP and one upper polariton
(UP), or two UP’s are generated. This is supported by the
spectral densities in the three lower panels of Fig. 2 for
!mod corresponding to, respectively, A, B, C peaks. In each
case, the emission is peaked at the frequencies of the final
polariton states; for the parameter chosen, we have indeed
[14,15]!LP;k ’ !12 �

��R;k � 0:8!12 and !UP;k ’ !12 �

��R;k � 1:2!12. The shoulder and the smaller peaks at
!mod=!12 < 1 are due to r � 2 processes, while higher
order processes require a weaker damping to be visible.

More insight into the quantum vacuum radiation is given
in Fig. 3. In the top panel, the robustness of the emission
has been verified for increasing values of the damping �:
the resonant enhancement is quenched, but the qualitative
features remain unaffected even for large damping. For
comparison, in the bottom panel the blackbody radiation is
shown as a function of !12 (ranging from the terahertz to
the mid infrared) for a k corresponding to an intracavity
photon propagation angle of 60
 at different temperatures.
The blackbody emission decreases almost exponentially
with !12, while the quantum vacuum radiation, being a
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FIG. 2. Top panel: rate of emitted photons dNout
k =dt (in units of

!12) as a function of the normalized modulation frequency
!mod=!12. Parameters: �!c;k � 2Dk�=!12 � 1, �=!12 �
0:025, ��R;k=!12 � 0:2, ��R;k=!12 � 0:04. Note that, due to
the scaling properties of the present model, the results do not
depend on the specific value of !12. The letters A, B, C indicate
three different resonantly enhanced processes. Bottom panels:
the spectral density (arb. units) for the processes A, B, C,
respectively. The resonant peaks occur at the LP (lower polar-
iton) and/or UP (upper polariton) frequency.
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function of ��R;k=!12 only, linearly increases with !12 at
fixed ��R;k=!12. For reasonable low temperatures the vac-
uum radiation exceeds the blackbody emission by several
orders of magnitude.

The increase of the emission versus the modulation
amplitude ��R;k=!12 is shown in the top panel of

Fig. 4. Note the strongly superlinear increase of the emis-
sion around the A and C peaks. In these regions, for large
enough modulation amplitude, the system develops an
instability, leading to a coherent parametric oscillation
[16]. Above the instability threshold, the solutions of
Eq. (2) in Fourier space are no longer valid, as the fields
exponentially grow with time (hence, not shown here). The
instability boundaries can be calculated from the mean-
field equations for haki and hbki by the Floquet method
[17]. The result is shown in the bottom of Fig. 4 versus
!mod=!12 and ��R;k=!12: agreement with the position of
the vertical asymptotes of the spectra is found.

In conclusion, we have presented a theoretical descrip-
tion of the quantum vacuum radiation from a semiconduc-
tor microcavity in the ultrastrong coupling regime with a
time-modulated vacuum Rabi frequency. The main signa-
tures of this radiation have been identified as a function of
the modulation parameters. Our results show that these
systems are very promising ones in view of the study of
quantum vacuum radiation phenomena.
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FIG. 4 (color online). Top panel: dNout
k =dt (in units of !12) vs
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bottom to top). Bottom panel: instability boundaries for
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