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We present an accurate numerical study of the equation of state of nuclear matter based on realistic
nucleon-nucleon interactions by means of auxiliary field diffusion Monte Carlo (AFDMC) calculations.
The AFDMC method samples the spin and isospin degrees of freedom allowing for quantum simulations
of large nucleonic systems and represents an important step forward towards a quantitative understanding
of problems in nuclear structure and astrophysics.
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The equation of state (EOS) of nuclear matter represents
a challenge in both nuclear structure physics and astro-
physics. The knowledge of the properties of nuclear matter,
and, in particular, of asymmetric nuclear matter, is needed
to predict the structure, the dynamics, and the evolution of
stars, in particular, during their last stages, when they
become ultradense neutron stars. Depending on the EOS,
the density of nuclear matter in the inner shells can reach
up to 9 times the core density of stable nuclei, �0 �
0:16 fm�3 [1].

One important step towards the understanding of these
astrophysical problems is the study of the symmetric nu-
clear matter, related to the various model NN interactions
available. While considerable advances have been made
[2,3], it is still impossible to firmly ascertain the degree of
accuracy of the approximations one has to introduce in
the many-body theories, and substantial discrepancies
still exist among the different theoretical estimates of the
EOS, the response functions, and the Green’s functions of
nuclear matter.

Experimental data on symmetric nuclear matter are
limited to the volume and the symmetry energy of the
Weizsacker mass formula, and to the nuclear matter com-
pressibility. Instead, an indirect test for the theoretical
predictions of the EOS of asymmetric nuclear matter is
provided by the mass-radius relation of a neutron star [3–
5], obtained by solving the Tolman-Oppenheimer-Volkov
equation.

At present the theoretical uncertainties on the equation
of state, coming from the approximations one has to in-
troduce in the many-body methods, and the lack of knowl-
edge of the nuclear interaction, do not allow for definite
conclusions when comparing with astronomical observa-
tions. However, the recent success in predicting the prop-
erties of light nuclei gives us some confidence that the
nonrelativistic description of nuclear matter based on ef-
fective potentials fitted to reproduce NN data and the
binding energy of light nuclei can be reliable enough.
The main feature of such nucleon-nucleon interactions,

besides the short range repulsion, is the explicit depen-
dence on the relative quantum state of the nucleons which
can be described using spin and isospin, angular momen-
tum, spin-orbit, and tensor operators [6].

Properties of light nuclei (A � 6) can be efficiently
computed with high accuracy using modern few-body
techniques [7–9] or with the ab initio no-core nuclear shell
model (with A � 12 [10] ). Quantum Monte Carlo tech-
niques based on recasting the Schroedinger equation into a
diffusion equation (diffusion Monte Carlo or Green’s func-
tion Monte Carlo) allowed for performing calculations up
to A � 12 [11,12]. However, the computational resources
needed for such simulations are very large, because of the
summation over all the possible states necessary to evalu-
ate the terms of the Hamiltonian with a quadratic depen-
dence on spin and isospin. The number of such terms, and
the CPU time needed to calculate them, grows exponen-
tially with the number of nucleons; 12C [11] or 14 neutrons
[13] is the limit for the currently available computational
resources.

Since the spatial degrees of freedom are already
sampled, one would like to replace the sum over the
spin-isospin states with an efficient sampling method.
The simulation of symmetric nuclear matter requires a
minimum of 28 nucleons in a box replicated in space (7
nucleons for each spin-isospin state) to obtain a wave
function with closed shells of momenta, and this is out of
the reach of the standard quantum Monte Carlo methods.

In this Letter we show that the spin-isospin is efficiently
sampled by using the auxiliary field diffusion Monte Carlo
method [14], which is based on the use of auxiliary vari-
ables to linearize the quadratic spin-isospin operators of
the nuclear matter Hamiltonian, making them treatable in a
diffusion Monte Carlo scheme. Up to now it has been
applied to simulate pure neutron matter (up to 114 neu-
trons) [15,16] and neutron drops [17,18] interacting with
realistic two-plus-three-body interactions.

Here we extend calculations to include isospin degrees
of freedom and to deal with the strong tensor-isospin force
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responsible of the nuclear binding. The method can readily
handle an asymmetry in the number of neutron and protons
or the deformation of heavy nuclei.

In this Letter we show that simulations of symmetrical
nuclear matter interacting via a semiphenomenological
two-body interaction including spin-isospin dependent
and tensor components have led to an EOS which shows
significant differences with respect to that obtained within
Fermi hypernetted chain and Brueckner-Hartree-Fock
methods [19], particularly at high densities. Even more
important is the finding that quantum Monte Carlo simu-
lations do not lead to any lowering of the FHNC or BHF
energies at �� �0. This fact points toward an inadequacy
of commonly used three-nucleon interaction models in the
whole range of density.

Auxiliary field diffusion Monte Carlo (AFDMC) [14] is
an extension of the standard diffusion Monte Carlo method
in which the ground state of an Hamiltonian H is obtained
by solving the imaginary time dependent Schroedinger
equation

 �
@
@t

��X; t� � H��X; t�: (1)

The solution is obtained by evolving a population of
configurations of the system (’’walkers’’) X � fR;�; �g,
where R � f ~r1; . . . ; ~rN; g, � � f ~�1; . . . ; ~�Ng, and � �
f ~�1; . . . ; ~�Ng, with F�X; t� � �T�X���X; t�, according to
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Z
dX0

�T�X�
�T�X0�

G0�X;X
0; t�F�X0; 0� (2)

The function �T is a ‘‘trial’’ wave function, usually de-
termined by means of variational calculations, andG0 is an
approximation to the Green’s function of the imaginary
time Schroedinger equation:

 G0�X;X0; t� � �4�Dt��3A=2e��R�R
0�2=4Dte�t�V�X��E0�; (3)

where D � @
2=2m, E0 is an estimate of the ground state

energy of the system, and V�X� is the nucleon-nucleon
interaction. For a long enough imaginary time the distri-
bution of the walkers converges to the product
�T�X��0�X�, where �0 is the wave function of the ground
state of H. This fact allows the computation of matrix
elements h�TjÔj�0i of observables Ô of interest in a
Monte Carlo way. When Ô 	 Ĥ the value obtained is the
exact ground state energy of the system. The presence of an
interaction V�X� including operators like (3 ~�i 
 r̂ij ~�j 

r̂ij � ~�i 
 ~�j) and ~�i 
 ~�j is the origin of the computational
cost in the standard approaches. The spin-isospin depen-
dent part of V�X� (Vsid) can be written as a sum of a matrix
Ai�;j� multiplied by spin-isospin operators as follows:
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where �n are the eigenvalues obtained by diagonalizing the
matrix A, and Ŝn� are operators written in terms of eigen-

vectors of A as follows:

 Ŝ n� �
X
i

�i� ~�i 
 ~ n�i�: (5)

AFDMC uses the Hubbard-Stratonovich method to trans-
form the operators Ŝ which are quadratic in the spin and
isospin into linear operators:
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Then Ŝ are operators which are linear combinations of the
spin and isospin operators for each nucleon, and � depend
on the interaction. The transformed Green’s function is
applied to the spin-isospin part of the wave function, and
its effect consists of a rotation of the spin and isospin
degrees of freedom (written as four-component spinors in
the proton-neutron up-down basis) by a quantity that de-
pends on the auxiliary variable y along with multiplication
of the state by an overall factor. The sum over spin and
isospin is replaced by sampling a set of rotations of the
variables. This procedure reduces the dependence of the
computational time on the number of nucleons necessary
for performing a simulation step from exponential to cubic.
It is therefore possible to perform on a regular workstation
or on a modest PC cluster calculations that would require
Tflop supercomputers with the standard methods. This
method, like other diffusion Monte Carlo methods, suffers
from the so-called ‘‘sign problem’’ when it is applied to
fermions, and when complex wave functions need to be
used. In our calculations we apply the fixed-phase approxi-
mation to overcome this problem [20]. While this method
has already been successfully applied to pure neutron
matter [16], it has not been previously used for mixed
proton and neutron systems. It should be noted that it
does not guarantee an upperbound to the mixed energy
used here. As a test for the correctness and the efficiency of
our approach we reproduced within 0.3 MeV total energy
the existing results for the binding energy of 4He with
potentials of the v6 class [21]. We have also been able to
compute binding energies for 16O with this method.

A crucial point in dealing with nuclear matter is the
choice of the interaction among nucleons. As already
mentioned, several modern two-body potentials are avail-
able nowadays, all fitting the NN data with �2 � 1. We use
the potentials of the Argonne class with n operators (AVn)
[22]. While the full version contains n � 18 operators,
most of the physics is reasonably well described by the
first 6 operators made up of 4 central spin-isospin depen-
dent components and two tensor ones, which include the
long range one-pion-exchange force. The most important
missing terms are the spin-orbit components. In nuclei and
neutron drops the spin-orbit contribution to the energy
amounts to a few tenths of MeV per nucleon. A correction
of the order 1 MeV=nucleon can be attributed at low
densities to the remaining terms included in AV18.
Specifically, we have used the interaction Argonne v08
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[21] truncated by dropping the spin-orbit terms, and in-
cluding only the first six operators, which we denote as
‘‘our AV60’’.

It is well known that two-body NN interactions under-
bind light nuclei, and one needs to add a specific effective
three-body potential to reproduce their low energy proper-
ties. Semiphenomenological three-nucleon interactions
following the lowest order three-nucleon diagrams with
one and two intermediate Delta resonance states provide
a very satisfactory description of the ground state energy
and the low level spectra of light nuclei up to 12C [11]. We
have disregarded such three-body forces in our simula-
tions. In nuclear matter they are essential to reproduce
the experimental saturation density, and, in general, they
contribute about 10% of the total binding energy. A full
comparison with the available experimental data goes be-
yond the scopes of the present Letter. Here we are inter-
ested in showing the efficiency of the AFDMC methods in
dealing with nuclear matter models which include realistic
tensor interactions like in our AV60 potential. Nuclear
matter calculations with Argonne v08 and Urbana three-
nucleon interaction are in progress.

The results of the calculations with A � 28 include box
corrections that have computed by adding to the two-body
sums contribution of nucleons in the first shell of periodic
cells. Such a procedure is effective. In order to assess the
magnitude of finite size effects we performed calculations
with 76 and 108 nucleons at densities � � 0:08 fm�3 and
� � 0:48 fm�3. Results are shown in Table I. As it can be
seen the results coincide with the ones obtained with 28
nucleons within 3%.

In the case of 28 nucleons for each density we generated
and then propagated a set of 1000 walkers for different
time steps ranging from �t � 5� 10�6 MeV�1 to �t �
2:5� 10�5 MeV�1. Each propagation at each time step
was performed up to at least a total imaginary time of t �
2 MeV�1. The AFDMC energy is determined by extrap-
olating to �t! 0. In order to lower statistical errors, in
some case longer total propagation time was needed, up to
a maximum of t � 6 MeV�1 in particular at higher den-
sities. Using a parallel supercomputer (typically 16 CPU
are employed) a propagation of 20 000 steps requires about
80 processor hours. Then for a fixed density we estimated
that a maximum of 5000 CPU hours are needed. In the case
of 76 and 108 nucleons we performed calculations only at a
one time step �t � 10�5 MeV�1 and we propagated until
a total imaginary time of t � 1 MeV�1.

We computed the EOS of symmetric nuclear matter in
the range of densities 0:5 � ��=�0� � 3, and compared it

with previous available results obtained with the same
potential using Fermi hypernetted chain in the single op-
erator chain approximation (FHNC-SOC) and the
Brueckner-Hartree-Fock (BHF) in the two-hole line ap-
proximation [19]. AFDMC calculations were performed
with 28 nucleons, filling the shell of plane waves with
momentum of modulus 1 and providing a wave function
yielding an isotropic density.

The results are summarized in Fig. 1 and reported in
Table II. The comparison of the various EOS suggests the
following comments: FHNC-SOC leads to an overbinding
at high density. A similar indication was found by Moroni
et al. [23] after a DMC calculation of the EOS of normal
liquid 3He at zero temperature, with a guiding function
including triplet and backflow correlations. The compari-
son with the equivalent FHNC-SOC calculations of
Refs. [24,25] have shown similar discrepancies. There
are two main intrinsic approximations in variational
FHNC-SOC calculations, which violate the variational
principle. The first one consists of neglecting a whole class
of cluster diagrams, the so-called elementary diagrams,
which cannot be summed up by means of FHNC integral
equations. We have calculated the lowest order diagram of
this class, namely, the one having only one correlation
bond and four exchange bonds with no operators. The
results obtained show a substantial effect from this diagram
and bring the FHNC-SOC estimates very close to AFDMC
results, as shown in Fig. 1. The second approximation is
related to the noncommutativity of the correlation opera-
tors entering the variational wave function. The only class
of cluster diagrams contributing to such noncommuting
terms, which can be realistically calculated, is that char-
acterized by single operator chains. It is believed that such

TABLE I. AFDMC energies per particle in MeVof 28, 76, and
108 nucleons in a periodic box at various densities.

�=�0 E=A�28� E=A�76� E=A�108�

0.5 �7:64�3� �7:7�1� �7:45�2�
3.0 �10:6�1� �10:7�6� �10:8�1�
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FIG. 1 (color online). Equation of state of symmetric nuclear
matter calculated with different methods. Red circles represent
AFDMC results with statistical error bars and the green line is
the fitted functional form described in the text. Dashed lines
correspond to calculations performed with other methods [19]
(blue line with squares: FHNC-SOC; magenta with diamonds:
BHF). Blue triangles represent the FHNC-SOC energies cor-
rected by including the low order of elementary diagrams as
described in the text. Blue arrows show the corresponding energy
shift, which increases at higher densities.
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an approximation is reliable in nuclear matter, but there is
no clear proof of this.

BHF calculations of Ref. [19] predict an EOS with a
shallower binding than the AFDMC one. It has been shown
for symmetric nuclear matter, using the AV18 and AV14
potentials, that contributions from three hole line diagrams
add a repulsive contribution up to �3 MeV at densities
below �0 [26], and decrease the energy at high densities
[27]. Such corrections, if computed with our AV60 poten-
tial, would probably preserve the same general behavior,
and bring the BHF EOS closer to the AFDMC one.
Therefore, our calculations show that the two-hole-line
approximation used in Ref. [19] is too poor, particularly
at high density.

The AFDMC equation of state was fitted with the fol-
lowing functional form:

 

E
A
�
E0

A
� ��x� �x�2 � ��x� �x�3; (7)

where x � �=�0 and the various coefficients are given by
E0=A � �14:04�4� MeV, � � 3:09�6� MeV, � �
�0:44�8� MeV, and �x � 1:83�1�. The resulting compressi-
bility K � 9�x2�@2�E=A�=@x2� �x at saturation density �x is
�190 MeV. The fit of the EOS allows for computing the
pressure versus density for symmetric nuclear matter.

The availability of an efficient and relatively fast pro-
jection algorithm for the computation of energies and other
observables of dense hadronic matter enables the possibil-
ity of a more quantitative understanding of the properties
of neutron stars and supernovae, as well as that of medium-
heavy nuclei. Computations on such systems are at present
out of reach of the standard GFMC methods and available
supercomputers. Therefore, the extension of AFDMC al-
gorithm to deal with nuclear matter is a significant step
forward. Some technical improvements on the calculations
presented here, such as the addition to our AV60 of spin-
orbit terms and three-body interactions are already under-
way. The treatment of asymmetric nuclear matter, particu-
larly important for the determination of the properties of
neutron stars, is also straightforward, and will be the sub-
ject of future exploration.
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