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An Electroweak Oscillon
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A numerical simulation of the full bosonic sector of the SU(2) X U(1) electroweak standard model in
3+ 1 dimensions demonstrates the existence of an oscillon—an extremely long-lived, localized,
oscillatory solution to the equations of motion—when the Higgs mass is equal to twice the W* boson
mass. The oscillon contains total energy 7 TeV localized in a region of radius 0.05 fm.
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Introduction.—In nonlinear field theories, static solitons
have been well studied (see, for example, [1]). However, a
much broader class of theories contain oscillons, solutions
to the equations of motion that are localized in space but
oscillate in time. In some special cases, such as the sine-
Gordon breather [2] and Q ball [3], conserved charges
guarantee the existence of exact, periodic solutions. Even
in the absence of such guarantees, however, localized
solutions have been found in many theories that either
live indefinitely or for extremely long times compared to
the natural time scales of the system.

For scalar theories in one space dimension, oscillons
have been found to remain periodic to all orders in a
perturbative expansion [2] and are never seen to decay in
numerical simulations [4], but can decay after extremely
long times via nonperturbative effects [5] or by coupling to
an expanding background [6]. In both ¢* theory in two
dimensions [7,8] and the Abelian Higgs model in one
dimension [9], there exist oscillons that are not observed
to decay. In ¢* theory in three dimensions [10], there exist
long-lived quasiperiodic solutions whose lifetime depends
sensitively on the initial conditions. Similar behavior is
present in other scalar theories in three dimensions [11]
and in higher dimensions [12]. Phenomenologically, small
0 balls were considered as dark matter candidates in [13],
axion oscillons were studied in [14], and the role of oscil-
lons in and after inflation was investigated in [15].
Oscillons have also been studied in phase transitions
[16], monopole systems [17], QCD [18], and gravity [19].

A recent numerical analysis [20] found oscillons in
spontaneously broken SU(2) gauge theory with a funda-
mental Higgs boson whose mass is exactly twice that of the
gauge bosons. Current work [21] is investigating an ana-
Iytic explanation of this mass relationship using a small
amplitude analysis [2,18,22], in which the 2:1 ratio arises
as a resonance condition necessary for quadratic nonlinear
terms to balance dispersive linear terms in the equations of
motion. In this analysis, a field of mass m oscillates with

amplitude em, frequency m~/1 — €2, and length scale
1/(em). A similar mass relation arises in the study of
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embedded defects [23]. The field configurations in [20]
were restricted to the spherical ansatz [24], meaning they
were invariant under combined rotations in space and
isospin. Here we extend this analysis to a fully three-
dimensional spatial lattice, eliminating rotational symme-
try assumptions, and include the U(1) hypercharge field to
obtain the full electroweak sector of the standard model
without fermions. We use the same SU(2) coupling g and
Higgs self-coupling A as in the pure SU(2) theory, meaning
that the Higgs boson mass is twice the mass of the W=
bosons, and set the U(1) coupling g’ so that the Z° boson
mass matches its observed value.

While one might expect the oscillon to decay rapidly by
emitting electromagnetic radiation, it does not. Instead,
after initially shedding some energy into electromagnetic
radiation, the system settles into a stable, localized oscillon
solution that no longer radiates. Similar behavior was
observed both when an additional massless scalar field
was coupled to breathers in one-dimensional ¢* theory
and when an additional spherically symmetric massless
scalar field was coupled to oscillons in the spherical ansatz,
results that provided motivation for this work.

Continuum theory.—We consider the standard classical
SU(2) X U(1) electroweak theory (see, for example, [25]),
ignoring fermions. The Lagrangian density is L=
(D, ®)'DrD —LF, Frr —LF, - FF" — A(|D]* - v?)?,
where boldface refers to isovectors. The Higgs field ®
is a Lorentz scalar carrying U(1) hypercharge 1/2 and
transforming under the fundamental representation of
SU(2). The SU(2) and U(1) field strengths are F,, =
oW,—o,W,+gW,XW, and F,,=0d,B,—0d,B,,
and the covariant derivatives are D /L(I) = (9 Py
ig'B,/2+igr-W,/2)® and D*F,, = i"F,, +
gW# X F,,, where 7 represents the weak isospin Pauli
matrices. The equations of motion are D, F*” = J”,
a,F**=1J", and D*D,® =2A(v?> — |D|*)®, where
J, = g'Im(9,®)® and J, = gIm(D, ®)T 7.

We work in the gauge By = 0, W, = 0. Then we can
apply a Hamiltonian formalism with energy density
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where the overdot indicates the time derivative. The
Gauss’s Law constraints, Zjaij =J, and Z,/‘Djo =
Jo, remain true at all times, at all points in space, assuming
they are obeyed by the initial value data.

Lattice theory.—We use the standard Wilsonian ap-
proach [26] for implementing gauge fields on the lattice
(for a review see [27]), adapted to Minkowski space evo-
lution as in [28]. (The details of the discretization have
been modified slightly for the present application.) The
U(1) and SU(2) gauge fields live on the links of the lattice
and the fundamental Higgs field lives at the lattice sites.
The lattice spacing is Ax, and we determine the values of
the fields at time 7, = ¢ + Az based on their values at times
t and t_ = t — At. We associate with the link emanating
from lattice site p in the positive jth direction the Wilson
line Uf = /8 BA2IeWETAY2 B the link emanating
from lattice site p in the negative jth direction, we take
vt =’ )t, where p = j indicates the adjacent lattice
site to p, in direction = j. At the edges of the lattice we use
periodic boundary conditions.

The equation of motion for the Higgs field at site p is
®7(1,) = 207 — Pr(r_) + ArrDP, where

UL orti — r

dr =
Ax?

+ 2A(v? — |DP|2)DP,

Jj=*x,*y *z

2

and all fields are evaluated at time ¢ unless otherwise
indicated. For the gauge fields, we have

AxAr?
2i

Ul = exp[anfo(t)T S

Ar
- io SmUh, tmug, )t @

j
J#i

where the currents are J7 = g'Im(®7) UL PP /Ax
and Jf=gIm(®”)f7U§’(I)”+j/Ax, and we have de-
fined InU} = iAx(g'B} + gW/-7)/2 and Up. ., =

Oij
T .
uiun ot Ut By defining

[TrinU?)> | TralnU?|?
j j
+
g?Ax? g>Ax?

lufIp = = IBJP+IWIP )

we can write the energy density as

lexp(InU¥(z1) — UL (z-)II?
4A7?

u”=%.z [

J=X).2

14 2 i
5 U2, I1°  Ju7@rs — orp?
= Ax? Ax?
dr(r,) — dr(r)|?
+ | ( +)4At2 ( )l 4 /\(lq)plz _ U2)2. (5)

At each lattice point, Gauss’s Law reads

>

j=xyz

U2 (,)UR (1) + InU? (1)U” (1)t
iAX2At
— UL+ IE D=0, (6)

where J, = gIm{[®7(¢,) — ®P(t_)]tDP}/(2Ar) and
Jo = gIm{[®7(1;) — DP(r_)] 7 DP}/(2A0).

Numerical simulation.—The initial conditions are ob-
tained starting from an approximate fit to the oscillons
found in [20]. That analysis used the spherical ansatz for
SU(2) Higgs-gauge theory,

1
T W, =[a17~£fci +—a(7i -7 X%) —z(ﬁx T),}
g r r

cp=l[ﬂ—m-f]<°>, )
g 1

where £ = x/r and a,, w, v, a, and 7y are functions of the
radius r and time ¢. The spherical ansatz field definitions
have been chosen to match those used in [20], though our
conventions for the three-dimensional theory are slightly
different. This form provides initial data for the W and ®
fields, with the initial B field chosen to vanish. To guaran-
tee that the initial configuration obeys Gauss’s Law in the
full SU(2) X U(1) theory, we generate the fit at a point in
the cycle where the time derivatives are smallest, and then
set all the initial time derivatives to zero. We work in units
where v = 1/+/2. Since we are dealing with classical
dynamics, we can rescale the fields to fix the SU(2) cou-
pling constant at g = +/2, so that the W* mass is my =
gv/~/2 = 1/+/2. We choose A = 1, giving a Higgs boson
mass that is twice the W= mass, my = 2uv/A = /2. These
choices agree with [20], except v here is v/+/2 there.
Finally, we fix g’ = 0.773, so that the Z° boson has its
observed mass.
In these units, we consider initial configurations

a;(r)=€(0.117€¢ + 0.016€r)(sech2er)'/?,

er r
p(r)=1-0. 1386S60hﬁ, v(r)= 0-0176rsech§,
a(r)=0.1 1762rsech%, y(r)=0, ®)

where the adjustable parameter € allows us to include a
combined rescaling of the fields’ amplitudes and r depen-
dence, as is commonly used in a small amplitude analysis
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[2,18,22]. While € = 1 gives an approximation to the
spherical ansatz solution of [20], a slightly larger value
appears to be necessary for the configuration to settle into a
stable solution in the full SU(2) X U(1) model. The first
term in parentheses in the definition of a;(r) is scaled to
match the coefficient of «, ensuring that @, a; — a/r, y/r,
and v all vanish as r — 0, as required for regularity of the
fields. Within the SU(2) spherical ansatz simulation, these
initial conditions settle into a long-lived oscillon, which we
never see decay. The U(1) interactions break the grand spin
symmetry of the spherical ansatz, though the continuum
theory still preserves invariance under combined space and
isospin rotations around the z axis. The Cartesian lattice
provides a small breaking of all rotational symmetries.
Thus configurations at later times are not constrained to
lie within this reduced ansatz. [The full three-dimensional
simulation does continue to agree with the spherical ansatz
simulation when the U(1) interaction is turned off.]

We start from these initial conditions and let the system
evolve for as long as is practical numerically. One concern
is that the outgoing radiation emitted as the configuration
settles into the oscillon solution can wrap around the
periodic boundary conditions, return to the region of the
oscillon, and potentially destabilize it. However, as long as
the region in which the oscillon is localized does not
represent a significant fraction of the lattice volume, this
radiation is sufficiently diffuse that it does not affect the
oscillon. We use a lattice of size L = 144 on a side in
natural units, which is more than enough to satisfy this
criterion. For L = 100, changing the lattice size simply
changes the pattern of noise caused by electromagnetic
radiation superimposed on the oscillon region, but does not
affect oscillon properties or stability. We can therefore be
certain that there is no coherent structure to this unphysical
radiation that could possibly be necessary for the oscillon’s
stability; its only possible effect is to destabilize the oscil-
lon, which only occurs if the radiation is artificially con-
centrated by a small lattice (e.g., of size L < 100). In
numerical experiments, these destabilization effects are
actually much weaker in the electroweak model than in
pure scalar or SU(2) Higgs-gauge models, because in the
electroweak model the radiated energy is almost entirely in
the electromagnetic field, while the oscillon solution ar-
ranges itself to be electrically neutral. For this reason, it is
not necessary to use absorptive techniques such as adia-
batic damping [7] (which would have to be adapted to
accommodate gauge invariance) or an expanding back-
ground [6].

We use lattice spacing Ax = 0.75, though Ax = 0.625
and Ax = 0.25 were verified to give completely equivalent
results in smaller tests. The time step is Az = 0.1. Total
energy is conserved to a few parts in 10°, which is appro-
priate since our algorithm is second-order accurate. To
check Gauss’s Law, we square the left-hand side of
Eq. (6), take the trace, and then take the square root of
the result. The integral of this quantity over the lattice
never exceeds 0.025 and shows no upward trend over

time, a highly nontrivial check on the numerical calcula-
tion. It is necessary, however, to use double precision to
avoid very gradual degradation in this result. A run to time
10000 takes roughly 40 hours using 24 parallel processes,
each running on a 2 GHz Opteron processor core.

We follow the energy in a spherical box of radius 28 as
the fields are evolved from the initial conditions in Eq. (8).
When the Higgs boson mass is twice the W= mass, only a
small amount of energy is emitted from the central region,
with the rest remaining localized for the length of the
simulation. If the masses are not in this ratio, however,
the initial configuration quickly disperses. The box radius
has been chosen to be just large enough to enclose essen-
tially all of the energy density associated with the stable
oscillon solution. As a result, as the initial conditions settle
into the stable oscillon solution, we are also able to see a
transient “‘beat’ pattern: the field configurations gradually
expand and contract slightly over many periods, causing a
small amount of energy to move in and out of the box,
accompanied by a corresponding modulation of the field
amplitudes. (When a larger box size is used, the graph of
the energy in the box flattens out.) Similar beats appear in
the SU(2) spherical ansatz oscillon [20], but in the elec-
troweak oscillon their amplitude decays more rapidly.
Here, as in [20], each excited field oscillates at a frequency
just below its mass, with amplitude of order 0.1 and typical
radius of order 10. By comparing the total number of cycles
to the total time, we find wy = 1.404 for the Higgs field
components and wy = 0.702 for the gauge field compo-
nents. The primary excitations are in the W= fields and the
@ field, with some energy radiated outward in the electro-
magnetic field in a dipole pattern and the Z° field largely
absent. (In the spherical ansatz oscillon the W* and Z°
fields must appear symmetrically.) The electroweak oscil-
lon remains approximately axially symmetric under com-
bined space and isospin rotations around the z axis. These
results suggest a simple modification of the initial configu-
rations in which the 7, component of W is set to zero in
Eq. (7). Then the final oscillon configuration is equivalent,
with the same field amplitudes, localized energy and field
frequencies, but less energy is shed initially, so there is less
superimposed noise caused by radiation returning from the
boundaries and the beat pattern is more clearly visible.
This case is shown in Fig. 1.

Conclusions.—We have seen strong evidence for the
existence of a long-lived, localized, oscillatory solution
to the field equations of the bosonic electroweak sector
of the standard model in the case where the Higgs boson
mass is twice the W= mass. Compared to the natural scales
of the system, this solution has fairly small field ampli-
tudes, but because of its large spatial extent it is very
massive. Such large, coherent objects are well described
by the classical analysis undertaken here. Quantization of
the small oscillations around the oscillon solution would
nonetheless be of interest, perhaps using methods similar
to those applied to Q-ball oscillons in [29].
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FIG. 1 (color online). Energy in a box of radius 28 as a
function of time in the natural units of [20]. One unit of energy
is 144 GeV, one unit of time is 5.79 X 10~?7 sec, and one unit
of length is 1.74 X 107!8 m. The initial conditions are given by
Eq. (8) with e = 1.15 and the 7, component of W in Eq. (7) set
to zero. For A = 1, the masses of the Higgs and W fields are in a
2:1 ratio and the solution remains localized throughout the
simulation. A transient beat pattern is also visible. For A =
0.95, the mass ratio is 1.95:1, there is no stable object, and the
solution quickly disperses.

Forming oscillons would likely require large energies
available only in the early universe. In this context, it
would be very desirable to incorporate fermion couplings,
which have been ignored here. (Lattice chiral fermions
introduce significant, but not insurmountable, technical
complications.) While one might expect the oscillon to
be destabilized by decay to light fermions, in the case of
the photon coupling we have seen that the analogous decay
mechanism is suppressed. A slow fermion decay mode
would be of particular interest in baryogenesis, since it
could provide a mechanism for fermions to be produced
out of equilibrium, as is necessary to avoid washout of
particle-antiparticle asymmetry. Or, if the oscillon is ex-
tremely long-lived, it could provide a dark matter candi-
date. If such results proved compelling, this analysis would
suggest a preferred value of the Higgs boson mass.
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