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Astrophysical observations (usually explained by dark matter) suggest that classical mechanics could
break down when the acceleration becomes extremely small [the approach known as modified Newtonian
dynamics (MOND)]. I present the first analysis of MOND manifestations in terrestrial (rather than
astrophysical) settings. A new effect is reported: around each equinox date, 2 spots emerge on the Earth
where static bodies experience spontaneous acceleration due to the possible violation of Newton’s second
law. Preliminary estimates indicate that an experimental search for this effect can be feasible.

DOI: 10.1103/PhysRevLett.98.101101 PACS numbers: 04.80.Cc, 45.20.D�

The work described here is motivated by a long-standing
puzzle of astrophysics: why does matter rotate around the
centers of galaxies faster than expected? This could be due
to (1) dark matter around the galaxies, (2) modification of
the Newtonian gravitational law, or (3) corrections to the
second Newton’s law. Possibilities (2) and (3) were pro-
posed by Milgrom in 1983 [1]; they are known collectively
as modified Newtonian dynamics (MOND). While the dark
matter studies are more common, interest in the MOND
alternative is rapidly growing at the moment [2,3]. Several
recent reviews of MOND’s successes and challenges are
available [4].

One may wonder if there is any point in questioning
Newtonian mechanics which has been with us for over 3
centuries and has never failed (within its area of applica-
bility). The answer is that the MOND effects could only
take place in a very special regime: the accelerations must
be unusually small, of the order of a0 ’ 2� 10�10 m s�2.
The following modification of the second Newton’s law
would fit the astrophysical data: F � ma��a=a0�, where�
is a function satisfying the two conditions:��a=a0� ! 1 at
a� a0 and ��a=a0� ! 0 at a� a0. Such small acceler-
ations very rarely occur under ordinary (i.e., nonastrophys-
ical) circumstances, and thus possible MOND effects could
easily have gone unnoticed. However, should MOND turn
out to be correct, then the foundations of physics, including
classical mechanics and general relativity, would have to
be revised. This explains why ground-based laboratory
tests of MOND are of vital importance not only for astro-
physics and cosmology, but also for modern physics as a
whole. Yet due to perceived difficulties such tests have
never been attempted, or even seriously discussed.

In this Letter I show that this perception can be over-
come. It turns out to be possible to predict exactly when,
where, and under what conditions the MOND effects
would manifest themselves on the Earth. The existing
experimental accuracy appears to be close to or better
than the precision required for the MOND-testing pur-
poses. As a result, several different experimental setups
can be imagined. I also formulate the most general con-
ditions that any MOND-testing setup should satisfy.

First, I emphasize that to obtain laboratory-testable pre-
dictions, MOND needs to be formulated not only in iner-
tial reference systems, but also in noninertial systems. (In
the MOND context all laboratory reference systems
should be considered as noninertial.) Because the dynami-
cal law is modified depending on the acceleration, the
transition between inertial and noninertial systems in
MOND becomes less straightforward than in conventional
mechanics.

Of particular interest are transformation properties of a0.
Logically, at least two options could be imagined. First,
one can assume that the fundamental acceleration that
determines the onset of the MOND regime equals a0

only in the inertial reference systems. Second, it could be
assumed that a0 is invariant under transformations from
inertial to noninertial systems. One would expect that these
two types of theories would lead to drastically different
experimental predictions.

For instance, the first type of theory requires that the
MOND regime be reached as soon as the test body moves
with a tiny acceleration & a0 with respect to the Galactic
reference frame. On the other hand, the second type of
theory implies that in order to reach the MOND regime, we
should try to ensure that the test body moves with a tiny
acceleration & a0 with respect to the laboratory reference
frame. However, it can be shown that the second version
(invariant acceleration a0) is not self-consistent. The rea-
son is that the invariance of a0 is inconsistent with the
kinematical rules of acceleration addition. In what follows,
only the first version will be considered.

We will now analyze what conditions must be realized in
order to obtain the MOND effect for test bodies moving in
the ground-based laboratory.

This question is easy to answer in the inertial system S0.
(It is the system with the origin in the center-of-mass of our
Galaxy and the axes pointing to certain far-away quasars).
In this system, we should ensure that the test body moves
with a tiny acceleration agal with respect to S0:

 a gal � 0: (1)

Throughout this Letter, the � sign will mean that the
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difference between the left-hand side and the right-hand
side of an equation is much less than the characteristic
MOND acceleration a0. Next, we are going to the labora-
tory system with the help of

 a gal�alab	a1�t�	!�
!��r	r1��	2!�v	a2;

(2)

where a1 is the acceleration of the Earth’s center with
respect to the heliocentric reference frame,! is the angular
velocity of the Earth’s rotation, a2 is the Sun’s acceleration
with respect to S0; r, v � _r, and alab � �r are the position,
velocity, and acceleration of the test body with respect to
the laboratory reference frame; r1 is the position vector of
the origin of the lab frame with respect to the terrestrial
frame with the origin at the Earth’s center. [As practical,
high-precision realizations of these intermediate frames
one can take the international celestial reference system
(ICRS) [5] and the international terrestrial reference sys-
tem (ITRS) [6].] A number of terms have not been written
out in Eq. (2) on account of their smallness. They include
terms due to the following: the Coriolis acceleration of the
Sun, the length-of-day variation, precession, and nutation
of the Earth’s rotation axis, polar motion, and Chandler’s
wobble. From Eqs. (1) and (2) we obtain the necessary and
sufficient condition for realization of the MOND regime in
the laboratory:

 a lab � �a1�t� �!� 
!� �r	 r1�� � 2!� v� a2:

(3)

The simplest setup for implementing this condition would
be to have a test body that is at rest in the laboratory frame.
Can we test MOND in this way? If we put v � 0, alab � 0,
and (without loss of generality) r � 0, the above equation
becomes

 a s�t� 	!� �!� r1� � 0; (4)

where I have introduced as � a1 	 a2 for convenience.
We note that this equation has no solutions unless as is
orthogonal to !, so we must first look for those instants tp
when

 ask�tp� � 0 or ask�tp�j � a0; (5)

where ask � �as!�=!. A continuity argument shows that
this equation has at least two solutions during each year.
Indeed, at the instant of a (northern) summer solstice ask >
0 whereas at the instant of a winter solstice ask < 0.
Therefore, there must be at least one instant during autumn
and one instant during spring when ask � 0 exactly.
Neglecting the effects due to the Moon and planets, these
instants would coincide exactly with the autumnal and
vernal equinoxes. In reality, the instants will be shifted
from the equinoxes. However, the above ‘‘existence theo-
rem‘‘ guarantees that these instants tp can be found with
astronomical precision through a straightforward but time-

consuming procedure using the lunar and planetary ephem-
erides. In addition, one can show that the off-equinox shift,
in any case, should be less than a few days.

Another estimate shows that due to the Earth’s orbital
motion, Eq. (5) will stay valid only for the time interval of
the order of �t� �a0=as��4�=T��1 � 1 s where � �
23270 � 0:41, T � 1 yr. [Strictly speaking, one should
also consider the analogous interval �t0 due to the lunar
orbital motion and then pick up the shorter of the two.
However, �t0 � �a0=a0��4�0=T0��1 turns out to be larger
than 1 s due to the small ratio a0=as ’ 1=180 and, thus, this
point can be ignored.] Once tp is found and plugged into
Eq. (4), the corresponding solution for the laboratory lo-
cation is r1? � as�tp�=!2. This key relation allows us to
find both the latitude and the longitude of the right spot. If
we again ignore the lunar and planetary effects, the rele-
vant magnitude is jas�tp�j ’ 0:005 93 m s�2 which gives
the required latitude � ’ �79500. As for the longitude, it
would generally vary from year to year. For instance, on
the autumnal equinox of 22 September 2008 these spots
would be at 56 west longitude—one in Greenland,
(79500 north latitude), another in Antarctica (79500 south
latitude). The account of lunar perturbation can signifi-
cantly change the longitude, but the latitude prediction is
much more robust: it would not change by more than �60,
or 10 km.

To emphasize these conditions, I will use the acronym
‘‘SHLEM’’ (static high-latitude equinox modified inertia).
The signature of the SHLEM effect would be a sponta-
neous displacement of the test body occurring exactly at
the instant tp defined by Eq. (5). The displacement ampli-
tude would be of the order of a0�2=2� 0:2� 10�16 m,
with the effective dynamic-violation time �� a0=�!as� ’
0:5 m s. (The interval � is determined by the Earth’s rota-
tion around its axis. Fortunately, this interval is longer than
the characteristic time scale of a LIGO-type interferometer
which is set by the ‘‘round-trip time’’ 2L=c ’ 3� 10�5 s
where L � 4 km is the interferometer arm length.) This
can be compared with the current sensitivity of gravita-
tional wave detectors (such as LIGO, VIRGO, GEO 600,
TAMA 300, AIGO, and others): about 10�18 m (LIGO) or
3� 10�21 m (MiniGRAIL, under construction). Thus it
appears that the use of a similar type of experimental setup
could be an interesting opportunity. Note that the exact
prediction of the time of the event will further increase the
chances of separating the SHLEM signal from the noise
(and also from true gravitational waves).

Provided that the above three conditions are met, due to
the Earth’s curvature the SHLEM effect would be signifi-
cant only in a space box with the following dimensions:
about 2REa0 cos�=as ’ 7 cm in the east-west direction
and about 2REa0=as ’ 40 cm in the north-south and ver-
tical directions (RE is the Earth radius). If the laser-
interferometer type of gravitational detector is used, then
the interferometer’s mirror should be placed in such a way
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as to maximize the overlap between that box and the
mirror. In particular, the orientation of the mirror is im-
portant: for instance, if a thin mirror has a diameter of
25 cm (same as in LIGO) then it should face either east or
west. Similar considerations apply to the choice of position
and orientation of the detector in the case of low-
temperature resonant bar detectors such as AURIGA,
NAUTILUS, and ALTAIR (Italy), EXPLORER (CERN),
ALLEGRO (U.S.), and NIOBE (Western Australia) as well
as the spherical cryogenic detectors under construction,
such as MiniGRAIL, GRAVITON, and TIGA. The reso-
nant detectors have the advantage of being more easily
transportable. On the other hand, their spectral sensitivity
is more narrow than that of the interferometer detectors
which could result in some reduction of the SHLEM signal.

In addition to gravitational antennas, one can also think
of the torsion balance methods whose existing sensitivity is
�10�15 m s�2 [7]. A new design with a better sensitivity is
proposed in Ref. [8]. The techniques developed recently
for short-range tests of gravity [9] can also be of interest in
the present context. Indeed, to probe into accelerations of
the order of a0 one needs to place two masses of the order
of 1 g at a distance of the order of a few centimeters. It
would be interesting to consider if other classic gravity
experiments—the equivalence principle tests, the fifth
force searches, etc. (see, e.g., [10])—could be adapted
for the purposes of searches for the SHLEM effect.

After obtaining the static solution, the next logical step
would be to find a stationary (i.e., v � const) solution of
Eq. (3). Note that the existence of such solution is by no
means guaranteed, and indeed we will see that such solu-
tion can only be found as an approximation. The physical
idea here is the cancellation between the Coriolis and the
centrifugal inertial forces which will be referred to as the
CCC setup.

In the stationary case we have �r � 0 and therefore our
Eq. (3) takes the form

 a s 	!� �!� �r	 r1�� 	 2!� v � 0: (6)

As in the static case, this equation has no solutions unless
the orthogonality relation, Eq. (5), holds. Consequently, the
above discussion regarding the ‘‘orthogonality‘‘ instants tp
and the ‘‘validity interval‘‘ �t remains in force for the
present case as well.

Now, plugging r � r0 	 vt into Eq. (6), we obtain

 a s	!�
!��r0	 r1��	 2!� v	!��!� v�t� 0:

(7)

We note that the last term is time dependent while all other
terms do not depend on time. (The time dependence of the
first term can be ignored within the ‘‘validity interval’’ �t.)
Thus the only way to get a solution is to require that the last
term is much less than a0. Introducing for convenience a
new variable x � !� v, we can write this condition as

 j!� xjt� a0 or v?t� a0=!2 ’ 4 cm; (8)

where t is the effective duration of the experiment and v? is
the component of v orthogonal to the Earth spin. Assuming
that this condition is satisfied and introducing b � !�

!� �r1 	 r0�� we can now rewrite Eq. (7) as follows:

 x � ��b	 as�=2: (9)

The solution is

 v? �
!� 
b	 as?�tp��

2!2 ; (10)

where as? � as � �as!�!=!2. Thus v? depends both on
the geographic coordinates of the lab and on the orthogo-
nality instant tp. In summary, Eqs. (5), (8), and (10) to-
gether give the necessary and sufficient conditions for
realizing the CCC setup, i.e., that the motion with the
constant velocity given by Eq. (10) will satisfy Eq. (3).
Thus the problem of finding the constant-velocity solution
is solved. In contrast with the static case, this solution does
not put restrictions on the laboratory location.

Let us see if the available accuracy of the quantities
involved in Eqs. (2) and (3) is sufficient for our purposes.

For the solar acceleration a2 one can find from the
existing data [11] that ja2j � �2:4� 0:3� � 10�10 m s�2.
Thus the existing uncertainty in a2 is about 15% of a0.
(Note that the angular coordinates of the galactic center are
known so well—within 1 milliarcsec [11]—that the an-
gular uncertainty in a2 can be completely ignored.) The
accuracy of Earth’s centripetal acceleration a1 is controlled
by the precision �k in determination [11] of the Gauss’
gravitational constant k; presently �k=k ’ 10�9. Because
ja1j ’ 0:006 m s�2, we conclude that the uncertainty in a1

is about 3% of a0. The angular velocity of Earth’s rotation
! is monitored by the International Earth Rotation and
Reference Systems Service (IERS [12,13]) with high pre-
cision: �!=! ’ 10�12. The positions on the Earth’s sur-
face, relative to the Earth’s center, can be measured up to
’1 mm (owing to the ITRS) Product Centre of the IERS
[6]). This means that the magnitude of the centrifugal
acceleration is known up to about 5% of a0 [this figure
corresponds to the lab located on the equator; for a nonzero
latitude � the accuracy must be multiplied by �cos���1].

The analysis of the Coriolis term in Eqs. (2) and (3) leads
to two sorts of constraints. First, the velocity v must not be
so great that the length-of-the-day uncertainty �! would
lead to the uncertainty of the Coriolis term of the order of
a0. This condition yields v & �1:4� 106�= sin� m s�2,
where � is the angle between v and !. Second, the
accuracy of velocity measurement �v must be such that
the corresponding uncertainty in the Coriolis term would
be� a0. It follows that �v� �1:4� 10�6= sin�� m s�2.
This constraint can be rewritten as an upper limit on the
velocity v provided the accuracies of the time and length
measurements are given. Indeed, suppose that time can be
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measured with the accuracy of �t and that the accuracy of
length measurement is such that its contribution does not
exceed the contribution of time uncertainty (this assump-
tion seems reasonable because, by definition, the speed of
light is known exactly). Then the resulting upper bound on
the velocity can be found as

 v�
�

106����������
sin�
p

� ��������������
l

100 m

s �
1

�t=10�14 s

�
m s�2: (11)

Here, l� vt is the characteristic distance involved in the
experiment. Note that today’s best atomic clock—the
mercury clock of the National Institute of Standards and
Technology [14]—has the accuracy of about �t ’ 10�16 s.
We conclude that the necessary ingredients appear to be
known with the precision that is close to the accuracy
required by the experiment.

In addition to the particular solutions of Eq. (3)—static
and stationary—described above, we can also find the
general solution of that equation in an analytical form
[15]. This solution requires knowledge of the functions
a1�t� and a2�t�, which is provided by astronomical obser-
vations. To obtain a solution in a more manageable form,
I adopt the following simplified model: (1) Acceleration
a2�t� is ignored (in other words, the heliocentric reference
frame is assumed to be inertial). (2) Acceleration a1�t� is
taken as a harmonic oscillation with the frequency !1 �
2�=�1 yr� (i.e., the eccentricity of the Earth’s orbit and the
Moon’s effect are neglected). (3) The direction of! (taken
as z axis) is assumed to be orthogonal to the Earth’s orbital
plane. Then the general solution of Eq. (3) is
 

�x � �x1 	 x0�!2 	 2v0y!� R!2
1

	 y1!3t� 3v0x!2t� x1!4t2;

�y � �y1 	 y0�!
2 � 2v0x!� 2x1!

3t� 3v0y!
2t

	 v0x!
2t	 3R!2

1!t� y1!
4t2:

(12)

The initial position and velocity of the test body are x0, y0,
v0x, v0y; the coordinates of the origin of the lab frame with
respect to the Earth’s center are x1, y1, and the Earth-Sun
distance is R. The trajectory and the velocity can be
obtained directly from Eq. (12) by integrating once or
twice. Thus, the trajectory is given by a parametric 4th
order curve. An interesting problem is whether or not an
experiment can be designed using this solution.

To summarize, it is proposed to test the validity of the
modified Newtonian dynamics hypothesis in a laboratory
based ‘‘crucial experiment.’’ The most general condition
for entering the MOND regime and its consequences for
the experimental design have been worked out. One inter-
esting possibility is to experiment with a test body at rest
using the familiar gravitational techniques for observing

the predicted SHLEM effect. Another possibility is based
on the idea of cancellation between the centrifugal and the
Coriolis inertial forces (the CCC setup).
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