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A general strategy to maintain the coherence of a quantum bit is proposed. The analytical result is
derived rigorously including all memory and backaction effects. It is based on an optimized �-pulse
sequence for dynamic decoupling extending the Carr-Purcell-Meiboom-Gill cycle. The optimized
sequence is very efficient, in particular, for strong couplings to the environment.
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Quantum information processing is a very promising
and very challenging concept [1]. The basic feature which
makes quantum information conceptually more powerful
than classical information is the quantum mechanical su-
perposition principle. It allows for the parallel processing
of many classical registers—the so-called quantum paral-
lelism. The single quantum bit (qubit) is a two-level system
which we may identify with a S � 1=2 system with states #
and " . Henceforth, we will use this spin language to
characterize the qubit. In order for this idea to work, the
qubit has to maintain its quantum state not only with
respect to the state " or # but also with respect to its relative
phase. Unavoidable couplings between the qubit and the
environment spoil the quantum state: the qubit loses its
coherence. This decoherence is one of the most serious
obstacles on the way towards applications. Hence finding
strategies to suppress decoherence is a crucial field of
research [1].

Dynamic decoupling [2–5] is one means to fight deco-
herence. The idea comes from spin-echo pulses in NMR
[6] where a large ensemble of spins is considered. Static
but nonuniform couplings can be compensated perfectly by
a single � pulse in the middle of the elapsing time interval.
The detrimental effect of more complicated perturbations
like dynamic interactions with the environment can be
suppressed by periodic � pulses or by periodic Carr-
Purcell cycles of two � pulses each [6].

The aim of this Letter is to show that an optimized
sequence of � pulses suppresses the decoherence even
more efficiently than the so far known sequences of equi-
distant pulses [2–5]. The proposed scheme extends the
known Carr-Purcell-Meiboom-Gill (CPMG) cycle [6,7].
In particular, for a strong coupling to the environment,
the optimized sequence achieves a much better suppression
for the same number of pulses. So the optimized sequences
will help to come closer to the realization of quantum
information devices.

We consider a fully quantum mechanical model
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consisting of a single qubit interpreted as spin S � 1=2,

whose operators are the Pauli matrices �x, �y, and �z. The
environment is represented by a bosonic bath with annihi-
lation (creation) operators b�y�i . The constant E sets the
energy offset. The relevant bath properties are given by the
spectral density [8,9]
 

J�!� �
X
i

j�ij
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� 2�!��!D �!�; (2b)

where we have chosen the standard Ohmic bath with
linearly rising density in (2b); � is the dimensionless
parameter controlling the coupling between qubit and
bath. But our scheme proposed below can be applied to
any spectral density J�!�. The high-energy cutoff !D is
chosen as in a Debye model for phonons, but other choices
are equally possible. Note that the correlation time tC of the
bath is set by 1=!D.

The model (1) can be easily diagonalized by the unitary
transformation U� exp��zK�, where K�

P
i��i=�2!i�� �

�byi �bi� is anti-Hermitean. The resulting effective Hamil-
tonian [10] Hef �

P
i!ib

y
i bi � �E is manifestly diagonal

with �E � E�
R
1
0 J�!�=!d!. In spite of this simplicity,

(1) suffices to study decoherence of the T2-type in the
NMR language which corresponds to phase decoherence
in the XY plane of the impurity spin. In this sense, (1)
constitutes a minimal, but fully quantum mechanical,
model to investigate decoherence phenomena. Spin flips,
however, do not occur so that T1 is infinite. The minimal
model renders the analytic examination of various pulse
sequences possible. All thermal, quantum, or memory
effects in the bath as well as backactions of the qubit on
the bath are included. The pulses used in the following will
always be considered to be ideal, i.e., instantaneous
(cf. Refs. [2] ) and without any error.

First, we look at a simple measurement assuming ini-
tially �z � 1 and the bath to be in its thermal equilibrium.
Such a state is generated by applying a sufficiently strong
magnetic field in z direction. Then a rotation about �x
is applied Dx��� � exp��i��x=2� � cos��=2� � i�x�
sin��=2� which transforms the spin in z direction to

 Dx���
y�zDx��� � cos��z � sin��y: (3)
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For � � �=2 a rotation by 90	 is achieved; for � � � the
inversion �z ! ��z. Measuring �y leads to the signal
 

s�t� � h"jDx��=2�y exp�iHt��y exp��iHt�Dx��=2�j"i

� h"jDef
x ��=2�y�ef

y �t�Def
x ��=2�j"i: (4)

The brackets stand for the thermal expectation value of the
bosonic bath. To obtain the line (4) we transform by U to
the effective variables and define A�t� :�
exp�iHt�A exp��iHt�. The spin content of the resulting
expression can be calculated using
 

�ef
x �t�j" = #i � exp�
2K�t��j# = "i (5a)

�ef
y �t�j" = #i � �i exp�
2K�t��j# = "i: (5b)

The bosonic expectation values of exponentials are com-
puted for operators A,B linear in the bosonic variables with
the help of exp�A� exp�B� � exp�A� B� exp��A;B�=2� and
with the help of hexp�A�i � exp�hA2i=2�. In this way, we
arrive at

 s�t� � cos�2’�t�� exp��2��t�� (6a)

with

 ’�t� �
1

2

Z 1
0
J�!�

sin�!t�

!2 d! (6b)

 ��t� �
Z 1

0
J�!�

sin�!t=2�2

!2 coth��!=2�d!: (6c)

Figure 1 illustrates the effect of the coupling strength �
and of finite temperature T � 1=� > 0. Figures 1(a) and
1(b) display the usual long-time decay while Fig. 1(c)
focuses on the deviation 1� s�t� from unity. For quantum
information processes Fig. 1(c) shows the relevant data
since 1� s�t� should be as low as possible. If error correc-
tion is to be applied thresholds between 10�4 [11,12] and
10�2 [13,14] have to be met. Inspecting Fig. 1(c) we
conclude that for values of � of about 0.1 the qubit can
be stored only for tiny fractions of the correlation time tC.

But even if � is significantly smaller, no storage is possible
for tC, let alone for any time longer.

Another interesting conclusion is that low values of !D
are favorable since they set a long-time scale [15]. This
means that an elastically soft environment, for instance, in
an organic compound with low !D, is better suited than a
hard environment with high !D. This is counterintuitive,
since one might have suspected that the influence of vi-
brations is lower when the spring constants /!2

D are
higher. The objection that the positive effect of a larger
tC in a soft medium will be thwarted by a large value of the
coupling � will be invalidated below.

We pass now to a sequence of pulses where the total time
interval 0! t is split into smaller intervals 0! �1t!
�2t! . . .! �nt! t with 0< �1 < �2 < . . .< �n < 1.
The � values are taken to be fixed. At each instance �it a
� pulse �y � �iDy�� � �� � �i exp��i��y=2�j��� is
applied which effectively changes the sign of the interac-
tion in Eq. (1). Hence the observable signal changes from
s�t� in Eq. (4) to
 

sn�t� � h"jDef
x ��=2�yRy�ef

y �t�RDef
x ��=2�j"i (7a)

R � �ef
y ��nt��ef

y ��n�1t� . . .�ef
y ��2t��ef

y ��1t�: (7b)

The evaluation of sn�t� is based on the same identities as
the one of s�t� except that it is algebraically more involved.
The result is cast in the form

 sn�t� � cos�2’n�t�� exp��2�n�t�� (8a)

with

 ’n�t� �
Z 1

0

J�!�

2!2 xn�!t�d! (8b)

 �n�t� �
Z 1

0

J�!�

4!2 coth��!=2�jyn�!t�j
2d!; (8c)

where the factor xn�z� in the integrand of the phase reads

 xn�z� � ��1�n sin�z� �
Xn
m�1

��1�m�1 sin�z�m� (9)

and the factor yn�z� in the integrand of �n�t� reads

 yn�z� � 1� ��1�n�1eiz � 2
Xn
m�1

��1�meiz�m : (10)

The phase is less harmful since its influence on the
signal is only quadratic in �. Hence we focus on �n. The
procedure discussed so far is based on n equidistant pulses
[2,3,5] with �m � m=�n� 1� yielding
 

jyn�z�j2eq � 4tan2�z=�2n� 2��cos2�z=2� 8 n even (11a)

jyn�z�j2eq � 4tan2�z=�2n� 2��sin2�z=2� 8 n odd: (11b)

For small values of z=�2n� 2� these functions rise quad-
ratically like �1=2�z2=�n� 1�2 omitting rapid oscillations.
Even without performing the integrations in (8) one can
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FIG. 1. Signal (4) vs time. Solid lines for T � 0; dashed ones
for T � 0:1!D. Panels (a) (linear) and (b) (double logarithmic)
from bottom to top for � � 0:25, 0.1, 0.01, 0.001. Panel (c)
(double logarithmic) displays 1� s�t� for the same values from
top to bottom.
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read off two features: (i) a large number n of pulses is
advantageous. The time scale tC is prolonged like tC !
�n� 1�tC. (ii) No further suppression is achieved since the
power law / z2 � �!t�2 remains unchanged.

Results of the equidistant�-pulse sequence are shown in
Fig. 2 as dashed-dotted lines. Clearly, a shift to the right is
discernible reflecting the growing factor n� 1. But no
significant change of the slopes occurs. It is still important
to have a weak coupling between qubit and bosonic bath to
store the qubit for a significant time. For instance, 100
pulses make it possible to store the qubit up to an error of
10�4 for� 5tC at � � 0:25 while for � � 0:001 it may be
stored for � 60tC.

Now we pose the question whether the sequence of
pulses can be optimized, for instance by exploiting the
freedom of choosing the instants of the pulses. The poten-
tial of nonequidistant pulse sequences was recently dem-
onstrated by concatenated pulse sequences [16]. In our
work, we aim at finding the optimum pulse sequence with
respect to canonical requirements.

Inspecting (10) one realizes that yn�0� � 0 always and
that there are n free parameters f�jg. So one may require
that n additional conditions are fulfilled. We use this free-
dom to make the first n derivatives y�j�n �z�jz�0 with j 2
f1; 2; . . .ng vanish. Nicely, the resulting equations have a
simple analytic solution for n � pulses

 �j � sin2��j=�2n� 2��: (12)

This is the main result of this Letter. The resulting factor in
the integrand yields
 

jyn�z�j
2
op �

��������
Xn

j��n�1

��1�je�iz=2� cos��j=�n�1��

��������
2

(13a)

� 16�n� 1�2J2
n�1�z=2�; (13b)

where the second line with the Bessel function Jn�1

represents a very good approximation valid for z=�2n�
2�< 1 up to exponential corrections. Note that �n�
1�J2

n�1�z=2� / �z=�2n� 2��2n�2 manifesting the effect of
the vanishing leading derivatives. From (13) follows that
the integrand stays extremely small up to a certain value of
z of the order of unity implying that decoherence hardly
takes place up to a certain time top given by top � �n�
1�tC. Beyond this time it sets in very abruptly.

How does our finding compare to known results? For
n � 2 we retrieve from Eq. (12) �1 � 1=4 and �2 � 3=4.
This means that our pulse sequence with the initial �=2
pulse about �x and two � pulses about �y reproduces the
CPMG cycle [6] which is widely considered for decoher-
ence suppression [7,17]. For all n > 2, Eq. (12) predicts so
far unexplored pulse sequences with a better potential for
decoherence suppression.

Figure 2 depicts the features of the optimum sequence.
Clearly, the lines are shifted to the right reflecting the
factor (n� 1) in top in parallel to the effect of equidistant
pulses. In contrast to equidistant pulses the optimized
pulses lead to steeper and steeper slopes on increasing n
implying that the behavior for different couplings � be-
comes almost indistinguishable. This feature is extremely
advantageous because it means practically that even a large
coupling� does not harm a long storage time. For instance,
for 100 pulses the qubit may be stored for �200tC inde-
pendently of the value of �. The possible storage time is by
a factor of 40 better than for the equidistant scheme for
� � 0:25. For � � 0:001 the improvement is still about a
factor of 4. Clearly, the improvement is most striking for
large values of the coupling. Recurring to the estimate of
tC � 1 ps [15] we see that 100 pulses allow us to extend
the storage time to about 200 ps.

Another way of looking at the optimized scheme
Eq. (12) is to ask how many pulses are needed to achieve
a certain storage time with an error below a certain thresh-
old, say 10�4. For � � 0:25, 5 or 6 pulses already imply a
storage time of 5tD. For the same storage, the equidistant
scheme requires about 100 pulses. Keeping in mind that in
practice each pulse will be imperfect, it is certainly advan-
tageous to work with a minimum number of pulses.

Let us turn to temperature. In practice, no system will be
at T � 0 and, in particular, the favorable soft media will be
operated at relative high T compared to the cutoff tem-
perature TD � !D (setting kB � 1 � @). In our model,
T � 1=� enters in the Eqs. (6c) and (8c) by the coth factor
reflecting the thermal occupation of the bosonic modes. It
deviates from its T � 0 value of unity only for small
frequencies. Small frequencies mean small values of z �
!t so that the suppression of jyn�z�j2op in this range, see
Eq. (13b), is particularly helpful. Finite temperature does
not lead to any noticeable decoherence as long as the
storage time is not too long, i.e., as long as it stays below
top. Indeed, curves at T � 0 are indistinguishable from the

 

10
-4

10
-3

10
-2

10
-1

1-
s n(t

)

10
0

10
1

10
2

10
3

ωDt

10
-4

10
-3

10
-2

10
-1

1-
s n(t

)

10
0

10
1

10
2

10
3

ωDt

5=n2=n

001=n02=n

FIG. 2. Signal (8) vs time for various numbers of pulses at T �
0. Solid lines for the optimized sequence, dashed-dotted lines for
the equidistant sequence (see main text). From top to bottom the
curves refer to � � 0:25, 0.1, 0.01, 0.001.
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solid ones in Fig. 2. This holds already for a rather small
number of pulses so that it is a highly relevant feature for
experimental realizations. For the equidistant scheme the
thermal effects are larger, in particular, for large tempera-
tures T * TD. The extreme insensitivity to thermal effects
represents another essential advantage of the optimized
scheme.

The above derivations hold for arbitrary T, i.e., even for
the classical limit T ! 1. Indeed, the same pulse sequen-
ces can be used for the classical Hamiltonian H �
�f�t�=2��z, where f�t� is controlled by Gaussian fluc-
tuations determined by hf�t�i � 0 and by hf�t1�f�t2�i �
g�t1 � t2�. The Fourier transform p�!� of g�t� is the power
spectrum and p�!�=� replaces J�!� coth��!=2� in
Eqs. (6c) and (8c) while the phases ’ and ’n are zero
classically. The other equations remain the same, in par-
ticular, Eqs. (12) and (13). This observation greatly in-
creases the applicability of our findings since many
systems, not only bosonic baths, can be described for
high temperatures by classical Gaussian fluctuations.

The equidistant dynamic decoupling or iterated CPMG
cycles have been realized experimentally, in particular, in
NMR experiments. The detrimental influence of very slow
nuclear spins on a solid-state qubit [18] or on the electron
spin in quantum dots [19] has been reduced recently. A
Rabi oscillation could be made vanish by realizing sequen-
ces of almost instantaneous � pulses exploiting the inter-
play between nuclear and electronic spins [20]. Krojanski
and Suter demonstrated recently that even the decoherence
of large quantum registers, realized by nuclear spins and
their dipole-dipole interaction, can be significantly reduced
by dynamic decoupling [21]. To our knowledge, however,
no optimized sequences obeying Eq. (12) have been
examined.

An optimized sequence is by definition more efficient
than a random one; cf. Ref. [22]. But for large symmetry
groups it may be easier to use a random scheme than to
optimize the pulse sequence. If more specific information
on the bath is available, cf. Ref. [17], other, specifically
adapted schemes might work more efficiently. Further-
more, we emphasize that hybrid techniques are attractive:
any other dynamic decoupling scheme may be improved
by replacing the � pulse or the CPMG cycle of two �
pulses by a suitable n > 2 sequence obeying Eq. (12). The
optimized design of real � pulses of finite duration in the
presence of bosonic baths, cf. Ref. [23] for classical baths,
is left for future research.

In summary, we discussed strategies for suppressing the
decoherence of physical quantum bits by dynamic decou-
pling. A promising way to optimize the sequence of �
pulses beyond the well-known CPMG sequence was ana-
lytically established. The comparison to equidistant pulse
sequences revealed that the optimized scheme enhances
the possible storage time by up to almost 2 orders of

magnitude. Alternatively, the number of pulses required
to achieve a certain prolongation of the storage time can be
much smaller (by a factor of 20 for strong coupling to the
bosonic bath) than for the standard equidistant scheme.
Additionally, the optimized scheme is extremely insensi-
tive to detrimental thermal fluctuations. So experimental
investigations of the optimized scheme are called for.
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