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We show that a unitary operation (quantum circuit) secretly chosen from a finite set of unitary
operations can be determined with certainty by sequentially applying only a finite amount of runs of
the unknown circuit. No entanglement or joint quantum operations are required in our scheme. We further
show that our scheme is optimal in the sense that the number of the runs is minimal when discriminating
only two unitary operations.
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Entanglement is a valuable physical resource for accom-
plishing many useful quantum computing and quantum
information processing tasks [1]. For certain tasks such
as superdense coding [2] and quantum teleportation [3], it
has been demonstrated that entanglement is an indispens-
able ingredient. For many other tasks entanglement is also
used to enhance the efficiency [4–7]. One important in-
stance among these tasks is the discrimination of unitary
operations. Although two nonorthogonal quantum states
cannot be discriminated with certainty whenever only a
finite number of copies are available [8], a perfect dis-
crimination between two different unitary can always be
achieved by taking a suitable entangled state as input and
then applying only a finite number of runs of the unknown
unitary operation [5,6]. It is widely believed that this
remarkable effect is essentially due to the use of quantum
entanglement. As entanglement is a kind of nonlocal cor-
relation existing between different quantum systems, cre-
ation of entanglement needs to perform joint quantum
operations on two or more systems. These joint operations
are generally difficult and expensive. Consequently, it is of
great importance to consume as small an amount of en-
tanglement as possible in accomplishing a given task. This
motivates us to ask the question, ‘‘What kind of tasks can
be achieved without entanglement?’’

Some pioneering works have been devoted to a good
understanding of the exact role of quantum entanglement
in the context of quantum computing. It has been shown
that for certain problems, including Deutsch-Joza’s prob-
lem [9], Simon’s problem [10], and the quantum search
problem [11], quantum computing devices may still have
advantages over any known classical computing devices
even without the presence of entanglement [12–15]. It was
also argued that it may be the interference and the orthogo-
nality but not the entanglement which are responsible for
the power of quantum computing [13].

In this Letter we contribute a new instance of this kind of
problems in the context of quantum information by report-
ing a somewhat counterintuitive result: Entanglement is
not necessary for perfect discrimination between unitary

operations. We achieve this goal by explicitly construct-
ing a simple scheme where no entanglement is needed
to discriminate any two given unitary operations with
certainty.

The basic idea behind our scheme can be best under-
stood in the following scenario. Suppose we are given an
unknown quantum circuit which is secretly chosen from
two alternatives: U or V. Here both U and V are unitary
operations acting on a d-dimensional Hilbert space (qudit).
To determine which case it really is, we first apply this
circuit to a qudit initially prepared in some state j i. This
action will transform the state of the system into Uj i or
Vj i, depending on whether the unknown circuit isU or V.
If there exists a suitable j i such that the above resulting
states are orthogonal, then a perfect discrimination is
achieved. If such a state does not exist, we apply a suit-
able unitary operation, say X1, on the above qudit and
apply the unknown circuit once more. After these two
runs the state of the qudit becomes UX1Uj i or
VX1Vj i. Similarly, if there exists a suitable input state
j i and unitary operation X1 such that the resulting states
are orthogonal, then a perfect discrimination is achieved
again. Otherwise, we repeat this procedure. After N runs,
the final state is j Ui � UXN�1U � � �X1Uj i or j Vi �
VXN�1V � � �X1Vj i. Interestingly, there always exist a
finite N, a sequence of unitary operations X1; � � � ; XN�1,
and a suitable input state j i such that the final output
states j Ui and j Vi are orthogonal. See Fig. 1 for a more
intuitive demonstration of this procedure.

A delicate analysis shows that the number of runs
needed in the above protocol is equal to that in the original
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FIG. 1. A sequential scheme for discriminating unitary opera-
tionsU and V without entanglement or joint quantum operations.
Here O represents the unknown circuit, N is the number of the
runs of applying O, X1; � � � ; XN�1 are the auxiliary unitary
operations, and j i is the input state. The output states j Ui
and j Vi are orthogonal.
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protocol [5,6] and is optimal in any scheme that can
perfectly discriminate U and V. It is clear in the above
scheme that entanglement is not used. All we need is the
ability to perform unitary operations and projective mea-
surements on a single qudit, which can be implemented
efficiently and economically in experiment.

Let us begin with some preliminaries that are useful in
presenting our main results. We will denote the
d-dimensional Hilbert space by H d. The notion U�d�
represents the set of unitary operations acting on H d.
When the dimension is clear from the context, we omit d
for simplicity. For a unitary operation U, we denote by
��U�, the length of the smallest arc containing all the
eigenvalues of U on the unit circle. It is obvious that
��U� � ��Uy� and ��U� � ��XUXy� for any X 2U.
We say unitary operations U and V are different if U is not
of the form ei�V for any real �.

Applying the notations introduced above, we can restate
the main ideas in Refs. [5,6] as follows. Two unitary
operations U and V are perfectly distinguishable if and
only if ��UyV� � �. The perfect distinguishablity be-
tween U and V in the multiple-run scenario means
there always exists a finite N such that ���UyV��N� �
�, which is essentially due to the identity ��W�k� �
minfk��W�; 2�g for any unitary W and k � 1. The mini-
mal N such that ���UyV��N� � � is given by d �

��UyV�
e.

Here dxe denotes the smallest integer that is not less than x.
The protocol that discriminates U and V with certainty
consists of three steps: (1) Prepare an N-qudit input state
j i; (2) apply the unknown circuit N times on j i (each
qudit one time); (3) perform a projective measurement on
the output states. Intuitively, this kind of protocol is called
parallel scheme. We should point out that the input state
j i such thatU�Nj i and V�Nj i are orthogonal should be
an N-qudit entangled state. How to generate such an en-
tangled state is a formidable task up to now even for
moderately large N. Consequently, this kind of scheme
can be implemented neither efficiently nor economically
in practice.

Let us consider a different scheme. We perform the
unknown circuit on the input state step by step. In contrast
to the parallel scheme, this scheme is intuitively named the
sequential scheme. To enable the sequential scheme to be
as powerful as possible, we insert a suitable unitary opera-
tion between each two runs of the unknown circuit. This
action can adapt the output state of the previous run to be
the best input state for the next run. Surprisingly, the
sequential scheme always leads to a perfect discrimination
between any two unitary operations.

Theorem 1.—Let U and V be two different unitary
operations, and let N � d �

��UyV�
e. Then there exist

X1; � � � ; XN�1 2U and j i 2H such that

 UXN�1 � � �X1Uj i ? VXN�1 � � �X1Vj i:

Proof.—For simplicity, we consider first the case where V

is the identity, and then reduce the general case to this
special one. We shall show the following claim: For any
nontrivial U 2U�d� and N � d ���U�e, there exists X 2
U�d� such that ��XyUXUN�1� � �. In other words, there
exists a state j i 2H d such that Xj i and UXUN�1j i
are orthogonal, and thus U and I are perfectly distinguish-
able by N uses.

Let us consider first the case when d � 2. By the spectral
decomposition theorem, we may assume that U is of the
form diag�ei�; 1�, where � � ��U� 2 �0; ��. If � � �,
then letting N � 1 and X � I2, we can directly verify the
validity of the result. Otherwise, let

 X �
cos� � sin�
sin� cos�

� �

be a real rotation, where 0 	 � 	 �
2 . First, we seek � such

that tr�XyUXUN�1� � 0, which is equivalent to

 cos 2�eiN� 
 sin2�ei�N�1�� 
 sin2�ei� 
 cos2� � 0:

Noticing �N � 1�� < � 	 N�, we can fulfil the above
equation by taking

 � � tan�1

����������������������������������������
�

cos�N�=2�

cos��N � 2��=2�

s
:

Second, for the above �, let XyUXUN�1 � ei�j 1i�
h 1j � ei�j 2ih 2j be the spectral decomposition. Choose
j i � �j 1i 
 j 2i�=

���
2
p

. It is easy to verify that
h jXyUXUN�1j i � 0.

Now for the general case d > 2. We can assume without
loss of generality that U is of the form
diag�ei�1 ; ei�2 ; � � � ; ei�d�, where 0 	 �k 	 ��U�<�. In
addition, we assume �1 � ��U� and �2 � 0. Then ap-
plying the result in the case of d � 2, we confirm the
existence of X11 2U�2� and j 0i 2H 2 such that
h 0jXy11U11X11UN�1

11 j 
0i � 0, where U11 � diag�ei�1 ; 1�.

The proof of the claim is completed by setting X � X11 �
Id�2 and j i � j 0i � 0d�2.

Let us continue the proof for the general V. Setting U
and N as UyV and d �

��UyV�
e, respectively, and applying

the above claim, we have the existence of X 2U and
j 0i 2H such that Xj 0i and UyVX�UyV�N�1j 0i are
orthogonal. The proof of the theorem is completed by
letting X1 � X2 � � � � � XN�2 � Uy, XN�1 � XUy, and
j i � j 0i. �

The above proof also presents an explicit protocol for
discriminating any two unitary operations without entan-
glement or joint operations. It is clear that only two differ-
ent auxiliary unitary operations, say, Uy and X, are re-
quired. This makes the above scheme actually feasible in
experiment. It is also worth noting that the input states
leading to perfect discrimination for different unitary op-
erations are in general not the same. Interestingly, when
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only 2� 2 unitary operations are under consideration, any
maximally entangled state of the form j�i � �j00i 

j11i�=

���
2
p

is a universal input. This is mainly due to the
simple fact that two 1-qubit unitary operations U and V are
perfectly distinguishable if and only if tr�UyV� � 0, which
is also equivalent to �I �U�j�i ? �I � V�j�i [5]. Of
course, any such input-state independent scheme needs to
consume a maximally entangled state.

Combining the parallel scheme with the sequential
scheme, we can design many different mixed schemes
for discriminating unitary operations U and V. For sim-
plicity, let us assume V � Id. Let 1<m<N, and let
k1; � � � ; km be an m partition of N, i.e.,

Pm
i�1 ki � N, ki �

1. It is clear that discriminating Uk1 � � � � �Ukm and Idm
with certainty is sufficient for discriminating U and Id. A
simple mixed scheme is to prepare an m-qudit system and
then for each 1 	 i 	 m apply ki times of the unknown
circuit to the ith qudit sequentially. Fig. 2 is a mixed
scheme with N � 6, m � 2, and k1 � k2 � 3.

The validity of the scheme is essentially due to the
following equation

 ��Uk1 � � � � �Ukm� � min
��Xm

i�1

ki

�
��U�; 2�

�
� �;

which can be directly verified by the definition of func-
tion �. Any different m partition of N will yield differ-
ent mixed scheme. We define the length of the mixed
scheme related to the partition fkig as max1	i	mki. In
practice we hope the length of the scheme is as small as
possible. It is not difficult to see that the minimal length
can be achieved when the m partition of N is as uniform as
possible. The minimal length is given by nmin � d

N
me. Let

N � �nmin � 1�m
 r for some 1 	 r 	 m. Then a corre-
sponding partition is k1 � � � � � kr � nmin, kr
1 � � � � �
km � nmin � 1.

Let us give some remarks about different schemes for
discrimination. The greatest advantage of the sequential
scheme is that no entanglement or joint quantum opera-
tions are needed. However, any such kind of scheme needs
to perform sequentially at least N times of the unknown
circuit. Instead, in the parallel scheme one needs to prepare
an N-partite entangled state as the probe state. (Here we
notice that it is possible to discriminate two N-partite

orthogonal states U�Nj i and V�Nj i by using local op-
erations on each single qudit and classical communications
between different qudits only [16], so the measurement
device does not require joint quantum operations.) When
there are at least N copies of the unknown circuit and
suitable entanglement, we can complete the discrimination
within a single step by applying N copies of the unknown
circuit to the input state simultaneously. For the case when
only 1<m<N copies of the unknown circuit are avail-
able, the discrimination task can be finished in dNme steps.
This reveals an interesting tradeoff between the spatial
resources (entanglement or circuits) and the temporal re-
sources (running steps or discriminating time). One should
choose the most economic scheme in order to save the
resources which are crucial in practice.

We notice that in the above schemes both the input state
j i and the measurement device for discriminating the
final output states j Ui and j Vi are determined by U
and V. When no a priori classical information about the
unknown circuit is available, the task is reduced to quan-
tum operation estimation and it is never possible to achieve
a perfect identification when only a finite amount of runs
(copies) of the unknown circuit are allowed (available) [5].
We would also like to point out that all the above schemes
require the ability to perform local operations (unitary
operations or projective measurements) on a single qudit
in order to perfectly discriminate the output states. This
fact is a little surprising as it seems that the parallel scheme
does not need any auxiliary unitary operations.

For the parallel scheme it has been shown that N �

d �
��UyV�

e is the optimal number of the runs to achieve a

perfect discrimination between U and V [5]. In what
follows we shall prove that this number is also optimal
for perfect discrimination between U and V by using any
sequential scheme. To present this result, we first introduce
a key lemma.

Lemma 1.—Let U and V be two unitary operations such
that ��U� 
��V�<�. Then ��UV� 	 ��U� 
��V�.

It is interesting that Lemma 1 can be directly derived
from Lemma 3 in Ref. [4]. So we omit the proof here.

Theorem 2.—Let U and V be two different unitary
operations, and k < d �

��UyV�
e. Then for any unitary opera-

tions X1; � � � ; Xk�1 2U and j i 2H ,

 UXk�1 � � �X1Uj i 6? VXk�1 � � �X1Vj i:

Proof.—Without any loss of generality we may assume
that V � I as it is clear that discriminating U and V is
equivalent to discriminating UyV and the identity I.

To prove Theorem 2, it is sufficient to show that if k <
N � d ���U�e then for any X1; � � � ; Xk�1 2U, we have

 ���Xk�1 � � �X1�
y�UXk�1 � � �X1U��<�: (1)

Applying Lemma 1 (k� 1) times we have the following
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FIG. 2. A mixed scheme for discriminating U and I. Here O
represents the unknown circuit, j i is a two-qudit input state, and
the output state j Oi � �O3 �O3�j i.
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 ���Xk�1 � � �X1�
y�UXk�1 � � �X1U�� 	 k��U�;

where we have used the fact that ��XyUX� � ��U� for
any unitary X. Noticing that k 	 N � 1 and �N �
1���U�<�, we have the validity of Eq. (1). �

Employing similar techniques, we can easily show that
N is also the minimal number of the runs of unknown
circuit in any scheme (sequential scheme, parallel scheme,
or any mixed scheme) that perfectly discriminates U
and V.

It is straightforward to show that any n > 2 different
unitary operations can be perfectly distinguishable without
entanglement or joint quantum operations. Let U1; � � � ; Un
be n possible candidates, and let Nij � d

�
��Uyi Uj�

e, where

1 	 i < j 	 n. By assuming the circuit is in fU1; U2g and
then applying the sequential scheme, we can reduce at least
one candidate and only need to consider the left n� 1
ones. Repeating this process at most n� 1 times, we
complete the discrimination without entanglement or joint
operations. The total number of the runsN satisfiesNmax 	
N 	 �n� 1�Nmax, where Nmax � maxfNi;jg. However, in
some special cases the procedure described above is far
from the optimal one. An interesting example is as follows.

Let fj0i; � � � ; jd� 1ig be an orthonormal basis for H d.
Consider the set of d2 generalized Pauli matrices f�mn: 0	
m;n	d�1g, where �mn �

Pd�1
k�0 !

nkjk
mihkj and ! �
e2�i=d. One can readily verify that any d� d maximally
entangled state can be used to perfectly discriminate this
set of unitary operations [2]. How many runs are needed if
the use of entanglement or joint operations is forbidden? It
is obvious that a single run is not sufficient as there cannot
be d2 orthogonal states in a d-dimensional state space.
Applying the procedure described above a d2 � 1 upper
bound can be obtained. We can do much better by employ-
ing a more efficient protocol. Let fj�li: 0 	 l 	 d� 1g be
another orthonormal basis such that j�li � 1��

d
p
Pd�1
k�0 !

kljki.

Then it is easy to see that ��mn � �mn�j0�0i � !�mnjm �ni.
Intuitively, by measuring the first qudit we obtain the in-
dex m, while by measuring the second qudit we know the
index n. Therefore two runs are necessary and sufficient to
discriminate d2 Pauli matrices without entanglement or
joint operations whenever how large d is. This example
also demonstrates that entanglement may reduce the
number of the runs when discriminating n > 2 unitary
operations.

In conclusion, we present a sequential scheme using
only unitary operations and projective measurements to
perfectly discriminate unitary operations. No entanglement
or joint quantum operations is required. This implies that
entanglement is not essential in achieving the perfect dis-

crimination between unitary operations, and in some sense,
confirms the importance of interference and orthogonality,
as suggested in Ref. [13]. We also propose various mixed
schemes for discrimination and show the optimality of
these schemes. Notably, there exists an interesting tradeoff
between the spatial resources and the temporal resources.
These results would be helpful when we try to achieve a
perfect discrimination with the lowest cost.
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