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We propose a scheme for encoding logical qubits in a subspace protected against collective rotations
around the propagation axis using the polarization and transverse spatial degrees of freedom of single
photons. This encoding allows for quantum key distribution without the need of a shared reference frame.
We present methods to generate entangled states of two logical qubits using present day down-conversion
sources and linear optics, and show that the application of these entangled logical states to quantum
information schemes allows for alignment-free tests of Bell’s inequalities, quantum dense coding, and
quantum teleportation.
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The most common implementations of quantum com-
munication schemes involve two or more parties that, in
order to encode and decode information, must share a
common spatial reference frame. Nevertheless, it has
been pointed out that a shared reference frame (SRF) is a
resource that should not be taken for granted, since estab-
lishing a perfect SRF requires the transmission of an
infinite amount of information [1]. One can circumvent
the need for a SRF encoding logical qubits in multiqubit
states with appropriate symmetry properties, so that the
states are rotationally invariant. This results in a consid-
erable reduction in overhead due to initial alignment
stages; but, since all the available protocols exploiting
multiqubit states of photons require the use of two [2– 4],
three [5], or four photons [5–8] to encode one single
logical qubit, this increases the amount of resources as
well as the sensitivity of the protocol to photon losses.

The lack of alignment between two users of a protocol is
equivalent to a collective random rotation of the qubits
during the transmission process, which can be considered
as a special type of collective noise. Rotationally invariant
states, in turn, span a decoherence-free subspace (DFS)
protected against such noise. A DFS protected against
collective noise is a subspace of the total Hilbert space of
a system that is immune to decoherence, provided that it
acts identically and simultaneously on each member of the
system [9]. For example, two ions of the same species
closely spaced in a Paul trap, or photons propagating close
together in the same optical fiber, are exposed approxi-
mately to the same fluctuations. Thus, through the use of
DFSs, their respective coherence properties can be en-
hanced considerably [4,10]. Nevertheless, the assumption
of collective noise is in practice fulfilled only approxi-
mately, as two different particles are never actually subject
to exactly the same noise.

Photons are a natural candidate for quantum communi-
cation due to the ease with which they can be transmitted.
Using spontaneous parametric down-conversion (SPDC),
one can create triggered single photons or entangled pho-
ton pairs [11,12]. Also, there has been a great deal of recent

work exploiting the fact that one can encode multiple
qubits into multiple degrees of freedom (DOF) of photons
[12,13]. But as different DOF are not necessarily affected
in the same way by the same rotation, the collective
rotation hypothesis is not necessarily valid, even for differ-
ent DOF of the same single photon.

However, there do exist two DOF of the photon that play
a preferential role for alignment-free quantum communi-
cation: the lack of a common reference frame in the plane
orthogonal to the propagation direction does imply a col-
lective rotation for the polarization and the transverse
spatial DOF. Here we show that it is possible to encode
logical qubits into single photons using these two DOF,
which allows for the implementation of quantum informa-
tion protocols in free space without the need of aligning the
two directions orthogonal to the propagation axis. The
novel aspect here is that the rotationally invariant states
are carried by single photons, which not only reduces the
required resources, but also the damage due to photon
losses. We first present the encoding scheme and then
discuss the implementation of several quantum communi-
cation protocols.

Let us outline the scenario. Two users, A and B, wish to
communicate photonic qubits. We assume that, in order to
send and detect the photons, they have previously estab-
lished a common propagation direction by, for example,
using an intense laser beam. Our scheme is based on the
fact that, in the usual paraxial approximation, both the
polarization and transverse spatial modes of a field are
defined in the plane transverse to the propagation direction
of the field. For example, consider a photon prepared in the
state j Ai � �jHAi � �jVAi, where jHAi and jVAi refer to
the horizontal and vertical polarization directions in refer-
ence frame A. A second user B whose coordinate system is
rotated an angle � around the propagation axis, would
describe this state as j Bi � ��cos�jHBi � sin�jVBi� �
��cos�jVBi � sin�jHBi�.

Similarly, one can encode information in the transverse
spatial DOF of a photon using the Hermite Gaussian (HG)
modes, denoted HGnm, where the positive integers n andm
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are the horizontal and vertical indices with respect to some
coordinate system. Here we consider the first-order modes
(n�m � 1) HG01 and HG10, which form a basis analo-
gous to that of polarization [14], and are described relative
to its same reference frame, as Fig. 1 shows. That is, if a
user A can prepare an arbitrary quantum state j�Ai �
�jhAi � �jvAi, where hA (vB) represents a horizontally
(vertically) aligned mode HG10 (HG01), then a �-rotated
user B would describe this state as j�Bi � ��cos�jhBi �
sin�jvBi� � ��cos�jvBi � sin�jhBi�. Since the effect of a
rotated user is the same for both DOF, the assumption of
collective rotation, around the propagation axis, is fulfilled
exactly, and it is thus possible to construct rotationally
invariant single-photon states which form a basis for a
logical qubit.

We define our single-photon logical computational basis
BL using the same abstract encoding of [2,10]: BL �
fj0Li � �jHvi � jVhi�=

���

2
p
; j1Li � �jHhi � jVvi�=

���

2
p
g,

where the subindex L stands for ‘‘logical.’’ Here lower case
(upper case) letters refer to HG (polarization) modes; e.g.,
jHvi stands for a photon with polarization H and trans-
verse mode v, etc. All states in the subspace VDFS, gen-
erated by BL, are invariant under arbitrary rotations of the
reference frame around the propagation axis. These states
are single-photon Bell states, and are easily prepared and
detected unambiguously with perfect efficiency using
single-photon controlled-not (c�̂x) gates, which have
been constructed using relatively simple linear optical
devices [8], and subsequently measuring in the physical
basis using polarizing beam splitters (PBS) and transverse
mode sorters (MS) [15].

Also one can manipulate the physical qubits individually
using a combination of half- and quarter-wave plates, in the
case of polarization, or Dove prisms and mode converters,
in the case of HG modes [14,16]. Using these elements and
the interferometric techniques described in Refs. [8], one
can implement any controlled-logic operation among the
physical qubits, and consequently, implement any SU�2�
unitary operation on the logical qubit. For example, using a

half-wave plate (HWP) aligned at �=2, followed by a
HWP aligned at 0�, realizes the polarization rotation
R̂yp�2��: jHi ! cos�jHi � sin�jVi, jVi ! � sin�jHi �
cos�jVi. Under this physical transformation the logical
states evolve like j0Li ! cos�j0Li � sin�j1Li and j1Li !
� sin�j0Li � cos�j1Li, which corresponds to the logical
rotation R̂yL�2�� � exp�i��̂yL�, where �̂yL is the usual Pauli
operator in the logical basis. It suffices now to show how to
implement a logical rotation around any other axis. It is
straightforward to see that, when acting on VDFS, the
following identity holds: R̂zL��� � cs�̂xp � R̂

x
s����:cs�̂xp,

where p and s refer to the polarization and spatial mode
qubits, respectively. For example, cs�̂xp is a controlled-not
gate, where the polarization qubit is controlled by the
spatial mode qubit. Finally, it is important to notice that,
in contrast to R̂yL�2��, where the evolution takes place
entirely inside VDFS, in the case of R̂zL��� the evolution is
not fault tolerant, meaning that R̂zL��� takes the protected
states momentarily out of VDFS and then brings them back.
Nevertheless, this is of no consequence here, since R̂zL��� is
never applied during the transmission but at one of the
user’s laboratories, where the reference frame is perfectly
defined.

Quantum key distribution.—One immediate application
of the ideas developed above is the implementation of
single-photon quantum key distribution schemes which
do not require initial alignment of the preparation and
measurement systems. As an example, let us briefly outline
the BB84 [17] protocol using these single-photon logical
qubits. By choosing randomly between the angles �A �

f0; �=4g and applying the rotation R̂yL�2�A�, Alice can send
random bits in either the logical computational basis or the
rotated logical basis j	Li � �j0Li 	 j1Li�=

���

2
p

. Bob’s ran-
dom measurements in the computational or rotated logical
bases, in turn, are carried out by simply performing the
logical rotations�B � f0;��=4g and subsequently detect-
ing—unambiguously and with perfect efficiency—in the
computational logical basis BL with the single-photon
Bell-state measurement (BSM) technique mentioned
above.

Generation of entangled logical states.— Using
SPDC, it is possible to create two-photon states entangled
in both polarization and transverse HG modes [18,19].
Pumping a single type-I crystal with a Gaussian profile
beam and post-selecting only the first-order modes, one
can generate down-converted photons in the entangled
state �jHh1Hh2i � jHv1Hv2i�=

���

2
p

, where the subindices
1 and 2 refer to photons in different (longitudinal) momen-
tum modes. Using controlled operations on the physical
qubits, it is possible to transform this state to an entangled
logical state. It is easy to show that applying the following
sequence of gates cs�̂xp � ĥs � cs�̂xp to the physical qubits of
each photon transforms the SPDC output state to the two-
photon Bell state composed of single-photon logical qu-

 

FIG. 1 (color online). Polarization and HG modes of the
electromagnetic field. Top: horizontal polarization jHi and
HG01 mode jhi (left), vertical polarization jVi and HG10 mode
jvi (right). Center: diagonal polarizations �jHi 	 jVi�=

���

2
p

and
diagonal modes �jhi 	 jvi�=

���

2
p

. Bottom: circular polarizations
�jHi 	 ijVi�=

���

2
p

and circular modes �jhi 	 ijvi�=
���

2
p

.
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bits: j��L i � �j0L1
0L2
i � j1L1

1L2
i�=

���

2
p

. Here ĥs is a
Hadamard gate on the spatial mode qubit. The other three
logical Bell states, j��L i � �j0L1

0L2
i � j1L1

1L2
i�=

���

2
p

and
j�	L i � �j0L1

1L2
i 	 j1L1

0L2
i�=

���

2
p

, can be immediately ob-
tained from j��L i with the single logical qubit rotations
described before. An alternative method to generate an
entangled logical state employs the methods proposed in
Ref. [19] using a second-order HG pump beam. We note
that this method can also be used to create nonmaximally
entangled logical states.

Tests of quantum nonlocality.—An important applica-
tion of the entangled logical states just presented is the
implementation of tests of Bell’s theorem without the usual
alignment of the analyzers, with only two photons.
Furthermore, using nonmaximally entangled logical states,
one can implement alignment-free tests of Hardy’s non-
locality without inequalities [20]. The importance of such
tests has been pointed out in [6], where a scheme using
eight photons was proposed. Also, the ability to realize
these tests allows for alignment-free implementations of
entanglement-based quantum cryptography [21].

Bell-state measurement.—The main ingredient to quan-
tum teleportation and dense coding is a BSM on two
qubits. In previous experiments using qubits encoded in
single DOF of photons, a partial BSM was performed
using two-photon interference [22,23]. Here we present
a device which can be used to perform a partial BSM
on the logical qubits presented here. Figure 2 illustrates
our analyzer. Photons are input on opposite sides of
a 50-50 beam splitter (BS). It has been shown that, in
addition to the � phase shift present in the usual beam
splitter transformations, the transverse spatial mode jhi
acquires an additional � phase due to reflection from
the BS [13]. That is, the evolution operator of a 50-50
BS is B̂ � ei��=2��âHvb̂

y
Hv�â

y
Hvb̂Hv� 
 ei��=2��âVvb̂

y
Vv�â

y
Vvb̂Vv� 


e�i��=2��âHhb̂
y
Hh�â

y
Hhb̂Hh� 
 e�i��=2��âVhb̂

y
Vh�â

y
Vhb̂Vh�, where âyXx

and b̂yXx are the creation operators of one photon with
polarization X (�H or V) and HG mode x (�h or v), in
momentum mode 1 and 2, respectively (notice the different
signs in the exponents for the cases Xh and Xv). Upon
application of B̂ our logical states transform as

 j��L i !
1
4��jHv1Hh2i � jHh1Hv2i � jHv1Vv1i

� jHv2Vv2i � jVh1Hh1i � jVh2Hh2i

� jVh1Vv2i � jVv1Vh2i� � �jHh1Hv2i

� jHv1Hh2i � jHh1Vh1i � jHh2Vh2i

� jVv1Hv1i � jVv2Hv2i � jVv1Vh2i

� jVh1Vv2i��; (1)

 j��L i !
1
4��jHv1Hh1i � jHh2Hv2i � jHv1Vv2i

� jVv1Hv2i � jVh1Hh2i � jHh1Vh2i

� jVh1Vv1i � jVh2Vv2i� � �jHh1Hv1i

� jHh2Hv2i � jHh1Vh2i � jVh1Hh2i

� jVv1Hv2i � jHv1Vv2i � jVv2Vh2i

� jVv1Vh1i��; (2)

 

j�	L i !
1
4��j2Hv1i � j2Hv2i �

���

2
p
jVh1Hv2i

�
���

2
p
jHv1Vh2i � j2Vh1i � j2Vh2i�

	 �j2Hh2i � j2Hh1i �
���

2
p
jHh1Vv2i

�
���

2
p
jVv1Hh2i � j2Vv1i � j2Vv2i��: (3)

Using additional linear optics devices to separateH from V
and h from v, it is possible to separate photons in different
states. For example, events like jVh1Hh1i, corresponding
to two photons in the same transverse mode and same
output port of the BS, can still be separated by polarization,
and registered through two-photon coincidence detections.
The states j��L i and j��L i always give coincidences in
different modes, so that they can be detected and discrimi-
nated with perfect efficiency. On the other hand, j��L i and
j��L i give coincidence events 50% of the time [24]. These
events are the same for both states, so they still cannot be
discriminated from one another. Still, this BSM of logical
qubits can be used for the implementation of quantum
dense coding, allowing for the transmission of log23 bits
of information in a single logical qubit, with an overall
efficiency of 1� 1=3

2  0:83 with coincidence detections.
Quantum teleportation.—Quantum teleportation [25] is

perhaps the most important application of a BSM. For
example, the error probability in the transmission of a qubit
scales exponentially with the length of the channel, seri-
ously limiting quantum communications. One way to cir-
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FIG. 2. Bell-state measurement device for logical qubits using
a 50-50 beam splitter (BS). MS is a transverse mode sorter and
PBS a polarizing beam splitter.
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cumvent this is using a quantum repeater [26], in which the
channel between A and B is divided into N segments using
N entangled pairs. Since the procedure requires N � 1
teleportation protocols, N SRF’s are necessary. Therefore
it is apparent that a SRF-free quantum teleportation
scheme is of considerable importance, since it would
greatly reduce the overhead of the repeater.

Suppose that A and B share the entangled logical state
j��L i12 between logical qubits 1 and 2, but do not a share
common reference frame, and A would like to teleport a
third logical qubit j Li3 � �j0Li3 � �j1Li3 to B. Using
the BSM presented above, A can project logical qubits 1
and 3 onto the logical Bell basis, and can identify j�	L i
unambiguously with 100% efficiency. She then communi-
cates her measurement result to B, who applies the logical
operations �̂xL or �̂zL�̂

x
L to his logical qubit when the

measurement result is j��L i or j��L i, respectively. The
overall teleportation efficiency is 50%, and the teleporta-
tion fidelity is 1. Nevertheless, A and B can increase the
efficiency of the protocol, while still working in the coin-
cidence basis, at the cost of a slight decrease in fidelity.
Half of the time, A’s BSM corresponds to one of the j�	L i
states, which, in turn, give coincidence detections 50% of
the time. In these cases, A can inform B that the measure-
ment result was j�	L i, and then B knows that his logical
qubit is either in state �j0Li � �j1Li (with probability 1

2 ,
corresponding to a teleportation fidelity of 1) or in �j0Li �
�j1Li (probability 1

2 , corresponding to an average tele-

portation fidelity of 2
3 ). Thus, if they perform the tele-

portation protocol only when A detects a coincidence
event, the efficiency is improved to 75% and the overall
fidelity of the teleportation procedure is 2

3� 1� 1
3�

1
2�

1� 1
3�

1
2�

2
3 �

17
18  94:4%.

Discussion.—In addition to rotations due to user mis-
alignment, there is also the problem of decoherence of the
physical qubits. The atmosphere is not birefringent, so
random polarization rotations are not an issue in free space
propagation of photons. However, fluctuations of the re-
fractive index of the atmosphere can deform the transverse
modes. Nonetheless, these effects could be monitored us-
ing an intense reference beam, and then corrected. Optical
fibers preserve spatial mode but are birefringent, which
severely limits long-distance quantum communication
with polarization qubits. Depending on the communication
protocol, these polarization rotations can be overcome
using a ‘‘plug and play’’ setup [27].
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