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Different quantum states of atoms in optical lattices can be nondestructively monitored by off-resonant
collective light scattering into a cavity. Angle resolved measurements of photon number and variance give
information about atom-number fluctuations and pair correlations without single-site access. Observation
at angles of diffraction minima provides information on quantum fluctuations insensitive to classical
noise. For transverse probing, no photon is scattered into a cavity from a Mott insulator phase, while the
photon number is proportional to the atom number for a superfluid.
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Studies of ultracold atoms in optical lattices link various
disciplines. Fundamental quantum many-body theories,
formulated initially for condensed matter, can be tested
in better controllable atomic systems [1], e.g., strongly
correlated phases and quantum simulators. Such studies
influence different areas [1]: quantum information process-
ing, ultracold collisions, exotic molecules, etc.

While mean-field approaches describe only the average
atomic density, the main goal is to study quantum proper-
ties of these gases. They are most prominent in lattices,
where one has phase transitions between states of similar
density but radically different quantum fluctuations.

Standard methods to measure quantum properties are
based on matter-wave interference of atoms released from
a trap [2] destroying the system. ‘‘Bragg spectroscopy’’
using stimulated matter-wave scattering by laser pulses
proved successful [3,4] but destructive. Alternative less
destructive methods observing scattered light were pro-
posed mainly for homogeneous Bose-Einstein condensates
(BEC) [5–8], but not yet implemented.

Here we show that specifically for periodic lattices, light
scattering can help to overcome experimental difficulties.
In contrast to homogeneous BECs, scattering from a lattice
allows us to determine local and nonlocal correlations
without single-atom optical access using the suppression
of strong classical scattering at Bragg minima and moni-
toring much richer angular distributions. This looks ex-
tremely useful for studying phase transitions between, e.g.,
Mott insulator (MI) and superfluid (SF) states, without
destruction, since various quantum phases show even
qualitatively distinct scattering.

Joining two fields, cavity quantum electrodynamics
(QED) and ultracold gases, will enable new investigations
of both light and matter at ultimate quantum levels, which
only recently became experimentally possible [9].

Our model is based on nonresonant interaction, not
relying on a particle level structure. Thus it also applies
to molecular physics, where new quantum phases were
obtained [10]. It can be also applied for semiconductors
[11], as, e.g., were used for BEC of exciton-polaritons [12].

Model.—We consider N two-level atoms in an optical
lattice withM sites. A region ofK � M sites is illuminated
by probe light which is scattered into another mode
(cf. Fig. 1). Although each mode could be a freely prop-
agating field, we will consider cavity modes whose geome-
tries (i.e., axis directions or wavelengths) can be varied. A
related many-body Hamiltonian is given by
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where a0 (a1) are the annihilation operators of the probe
(scattered) light with the frequencies !0;1, wave vectors
k0;1, and mode functions u0;1�r�; ��r� is the atom-field
operator. In the effective single-atom Hamiltonian Ha1, p
and r are the momentum and position operators of an atom
of mass ma trapped in a classical potential Vcl�r�; g0 is the
atom-light coupling constant. We consider the field-atom
detunings �la � !l �!a larger than the spontaneous
emission rate and Rabi frequencies. Thus, in Ha1 the
adiabatic elimination of the upper state was used.

Assuming weak fields a0;1, we expand ��r� in Eq. (1)
using localized Wannier functions corresponding to Vcl�r�
and keep only the lowest vibrational state at each site:
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FIG. 1 (color online). Setup. A lattice is illuminated by a probe
at the angle �0 which is scattered into a cavity at �1.
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��r� �
PM
i�1 biw�r� ri�, where bi is the atom annihila-

tion operator at site with coordinate ri. Substituting this in
Eq. (1), one can get a generalized Bose-Hubbard
Hamiltonian [1] including light scattering. However, in
contrast to our previous work [13] and ‘‘Bragg spectros-
copy’’ [4], we do not consider lattice excitations here and
focus on scattering from atoms in a prescribed state.

Neglecting atomic tunneling, the Hamiltonian reads

 H �
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where n̂i � byi bi. We define the operator of the atom
number at illuminated sites as N̂K �

PK
i�1 n̂i. For a deep

lattice the coefficients Jlmi;i �
R
drw2�r� ri�u�l �r�um�r� re-

duce to Jlmi;i � u�l �ri�um�ri�, neglecting atom spreading,
which can be studied even by classical scattering [14].

The Heisenberg equation for the scattered light in the
frame rotating with !0 (�01 � !0 �!1) thus reads
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where � is the cavity decay rate and a0 will be assumed a
classical field given by a c-number constant.

Light properties.—Though the dispersion shift of a cav-
ity mode is sensitive to atom statistics through n̂i, we
assume it is much smaller than � or �01. A stationary
solution of Eq. (2) for a1 and photon number then reads

 a1 � CD̂; nph � ay1a1 � jCj2D̂
�D̂; D̂�

XK
i�1

Ain̂i;

(3)

with C � ig2
0a0=	�0a�i�01 � ��
 and the coefficients

Ai��0; �1� � u�1�ri�u0�ri�. This expression of the light op-
erators through the atomic ones is a central result here.

For a 1D lattice of period d and atoms trapped at xm �
md (m � 1; 2; . . . ;M) the mode functions are u0;1�rm� �
exp�imk0;1xd� for traveling and u0;1�rm� � cos�mk0;1xd�
for standing waves with k0;1x � jk0;1j sin�0;1 (cf. Fig. 1).
For the atomic quantum state we use the following assump-
tions: (i) the mean atom number at all sites is hn̂ii � n �
N=M (hN̂Ki � NK � nK) and (ii) the pair correlations
hn̂in̂ji are identical for any i � j, which is valid for a
deep lattice, and will be denoted as hn̂an̂bi (with a � b).

Thus, ha1i � hD̂i �
PK
i�1 Aihn̂ii � nA showing that the

field amplitude only depends on the mean density and
exhibits the angular distribution of classical diffraction
A��0; �1� �

PK
i�1 Ai��0; �1� with diffraction maxima and

minima. The central point now is that the photon number
(3) is not just the amplitude squared, but we get
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XK
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where �n̂i � n̂i � n giving h�n̂a�n̂bi � hn̂an̂bi � n2, and
h�n̂2i equal to the variance ��ni�2 � hn̂2

i i � n
2. Thus, the

intensity is sensitive to atomic quantum statistics via the
density-density correlations hn̂in̂ji different for particular
states. Besides the classical angle dependence jAj2, the
second term in Eq. (4a) reflects fluctuations and has a
completely different dependence. Particularly in a lattice,
scattering is sensitive not only to the periodic density, but
also to periodic fluctuations, leading to the observable
difference between states with and without nonlocal corre-
lations. Analysis of quadrature variances gives results
similar to analysis of the noise quantity R.

For two traveling waves, Eq. (4a) gives the structure
factor considered in Ref. [7] on homogeneous BECs. We
show that a more general form including standing waves
gives new measurable quantities beyond structure factor.

The intensity fluctuations of the scattered light depend
on the fourth moments of the atomic number operators and
four-point density correlations hn̂in̂jn̂kn̂li. For example,
the photon-number variance is given by ��nph�

2 � hn2
phi �

hnphi
2 � jCj4�hjD̂j4i � hjD̂j2i2� � jCj2hjD̂j2i.

To discuss examples of different scattering we summa-
rize statistical properties of typical states in Table I. For
light scattering, the most classical state corresponding to
pointlike atoms is MI. Here the atom number at each site n̂i
does not fluctuate and we have no pair correlations. Hence,
we see from Eq. (4a) that the zeros of classical diffraction
[A��0; �1� � 0] are zeros of light intensity.

This is different for a SF where each atom is delocalized
over all sites leading to number fluctuations at a given site
and at K <M sites; the atoms at different sites are anti-
correlated. At a classical diffraction zero we still find a
photon number proportional to the atom number N.

A coherent state approximates a SF, but without pair
correlations. In the limit N, M ! 1, it well describes
scattering from a small region (K� M) of a partially
illuminated superfluid (SFK). However, we proved that
even in this limit it fails to describe scattering at angles
of Bragg maxima from a large lattice region (K �M).

Example.—Let us now show the most striking predic-
tions of this model at the basic example of a probe trans-
verse to the lattice (�0 � 0 cf. Fig. 1). The scattered light is
collected in a cavity along the lattice (�1 � �=2) with
atoms trapped at the antinodes (d � �=2) [13,15].

The operator D̂ �
PK
k�1��1�k�1n̂k (3) here gives almost

zero average field amplitude independently on the atomic
state. This reflects the opposite phase of light scattered
from atoms separated by �=2 (diffraction minimum).
However, the cavity photon number is proportional to
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hD̂�D̂i � �hn̂2i � hn̂an̂bi�K [cf. Eq. (4a)], which is deter-
mined by statistics of a particular state. Thus, atoms in a MI
state scatter no photons, while a SF scatters number of
photons proportional to the atom number:

 ha1iMI � ha1iSF � 0; but hay1a1iMI � 0;

hay1a1iSF � jCj2NK:

Moreover, the photon number fluctuations ��nph�
2 are

also different for various atomic states. In the MI state, the
variance ��jDj2�2MI � hjD̂j

4iMI � hjD̂j2i2MI � 0, whereas
in SF, there is a strong noise ��jDj2�2SF  2N2

K.
Coupled light-matter dynamics in a cavity can lead to a

new self-organized phase [15] with atoms trapped at every
second site (d � �), which gives D̂ �

PK
k�1 n̂k � N̂K (3).

If this state is a MI with d � �, the number of photons
hay1a1iSelf-org � jCj2N2

K is proportional to the atom number
squared and has a superradiant character.

Angular distributions.—We will quantitatively discuss
angular intensity distributions for scattering between two
traveling waves, where Eq. (4b) reduces to

 R�h�n̂a�n̂bi
sin2�K��=2�

sin2���=2�
��h�n̂2i�h�n̂a�n̂bi�K: (5)

While jAj2 in the first term reproduces classical diffrac-
tion with �� � k0xd sin�0 � k1xd sin�1, the second term
in Eq. (4b) is simply isotropic. Thus, the noise quantity is
zero for MI, RMI � 0, nonzero but isotropic for the coher-
ent state, RCoh � NK, and angle dependent for a SF. In a
SF, even small pair correlations h�n̂a�n̂bi � �N=M2 give
a large contribution near diffraction maxima (�� � 2�l,
l � 0:1; . . . ), where the geometric factor isK2, invalidating
the coherent-state approximation.

Figure 2 displays those angular distributions. Classical
diffraction jhDij2 with the only possible zero-order max-
ima at �1 � 0, � (d � �0;1=2, �0 � 0) is shown in
Fig. 2(a). R for the coherent and SFK states are plotted in
Figs. 2(b) and 2(c). For MI, R � 0. In SF, there is a noise
suppression at maxima, which is total for all sites illumi-
nated, K � M, and partial for K � M=2.

In a maximum, D̂ (3), is reduced to N̂K. Thus, the field
amplitude is determined by NK � nK, the intensity de-

pends on hD̂�D̂i � hN̂2
Ki, while R � ��NK�

2 gives the
atom-number variance at K sites, which reflects the total
and partial noise suppression in Figs. 2(b) and 2(c), since
hNKi fluctuates for K <M. In diffraction minima, the field
is zero, but the intensity is proportional to hn̂2i � hn̂an̂bi.
Under scattering of spatially incoherent light, the intensity
is isotropic and proportional to hn̂2i.

So, in optical experiments, varying the geometry, the
global statistics of K sites, local single-site statistics, and
pair correlations can be obtained even without a single-site
access. Thus, light scattering gives a way to distinguish
between atomic states. As shown by Eq. (5) and Fig. 2, MI
and SFM states are different in diffraction minima and in
incoherent light. They are indistinguishable in maxima.
SFM and coherent states differ in maxima only. The MI
and coherent state are different at any angles.

The noise quantity or photon statistics are different in
orders of NK for various states. Nevertheless, for large NK,
there could be practical problems to subtract large values in
a maximum. In Ref. [6], this even led to a conclusion about
the state indistinguishability by intensity measurements. In
contrast to homogeneous BECs, in lattices, this problem
has a natural solution: measurements outside maxima are
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FIG. 2 (color online). Intensity angular distributions for two
traveling waves. (a) Intensity of classical diffraction; (b) noise
quantity R (5) for coherent atomic state (constant 1, line A), SF
with all sites illuminated K � M (curve B), and MI state
(constant 0, line C); (c) the same as in (b) but for partially
illuminated SF with K � M=2. N � M � 30, �0 � 0.

TABLE I. Statistical quantities of typical atomic states.
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free of the strong classical-like part of scattering and thus
directly reflect fluctuations.

A classical analogy of different light scattering consists
of different density fluctuations. A quantum treatment
gives a deeper insight. The superfluid state is a superposi-
tion of all possible multisite Fock states giving distribu-
tions of N atoms at M sites. Various Fock states become
entangled to scattered light of different phases and ampli-
tudes. In contrast to a classical case (and MI with the only
multisite Fock state), light fields entangled to various dis-
tributions do not interfere with each other due to the
orthogonality of the Fock states. This reflects the which-
way information and explains the zero amplitude but non-
zero photon number in a diffraction minimum.

If at least one of the modes is a standing wave, the angle
dependences become much richer. Besides new classical
maxima given by �� � k0xd sin�0 � k1xd sin�1, the sec-
ond, ‘‘noise,’’ term in Eqs. (4a) and (4b) is also not iso-
tropic. It includes a sum of the geometric coefficients
squared, which is equivalent to effective doubling of the
lattice period (or light frequency doubling) leading to new
features at angles, where classical diffraction predicts zero.
In Fig. 3, a case of two standing waves is shown. Because
of the effective period doubling (given by 2�0;1 �
2k0;1xd sin�0;1 and 2��), new features at the angles of,
e.g., effective first-order maxima appear, though classically
only the zero-order maxima are still possible.

The angle dependence of the photon number variance
��nph�

2 determined by ��jDj2�2 shows anisotropic fea-
tures due to ‘‘period doubling’’ even for two traveling
waves. For the coherent state, the light at a maximum
displays strong noise [��jDj2�2 � 4N3

K � 6N2
K � Nk be-

cause hjD̂j4i � N4
K � 6N3

K � 7N2
K � Nk and hjD̂j2i �

N2
K � NK], stronger than the isotropic component (N2

K in
highest order of NK) and new features at �1 � ��=2 (for
�0 � 0, 2N2

K in highest order of NK). In SFM, the noise at
maxima can be suppressed, while at other angles it is
nearly equal to that of the coherent state. In MI,

��jDj2�2 � 0. Distinguishing between atomic states by
light statistics is similar to that by the intensity.

In summary, we have shown that atomic quantum states
can be nondestructively monitored by measuring scattered
light. In contrast to homogeneous BECs, scattering from
lattices exhibits advantageous properties: suppression of
the classical scattering in Bragg minima, access to local
and nonlocal correlations, angular distributions richer than
classical diffraction. Also, other optical phenomena and
quantities depending nonlinearly on the atom-number op-
erators will reflect quantum atom statistics [16,17]; e.g.,
the dispersion of a medium will provide a spectral method
of quantum state characterization [18]. Exploiting quan-
tum properties of light should be applicable to other Bragg
spectroscopy setups.
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FIG. 3 (color online). Intensity angular distributions for two
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