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The enigmatic stability of population oscillations within ecological systems is analyzed. The underlying
mechanism is presented in the framework of two interacting species free to migrate between two spatial
patches. It is shown that the combined effects of migration and noise cannot account for the stabilization.
The missing ingredient is the dependence of the oscillations’ frequency upon their amplitude. A simple
model of diffusively coupled oscillators allows the derivation of quantitative results, like the functional
dependence of the desynchronization upon diffusion strength and frequency differences. The oscillations’

amplitude is shown to be (almost) noise independent.
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The apparent stability of prey-predator systems is an
age-old puzzle. When a predator consumes a prey it clearly
increases its fitness and its chance to breed and to produce
more predators, so one may expect that system to be
inherently unstable. Ancient day naturalists, like
Herodotus and Cicero, perceived the persistence of prey
species in the face of adversity as a manifestation of divine
power and the creator’s design [1]. In modern times, the
explanations become more deterministic, and rely on the
fact that when the prey population decays there is not
enough food for the predators and their population also
diminishes. This idea naturally leads to the concept of
population oscillations and was expressed mathematically,
using deterministic continuous time partial differential
equations, by Lotka and Volterra (LV) model [2]. The
analogous model with discrete time step was introduced
for a parasitoid-host system by Nicholson and Bailey [3].
Both models allow, essentially, for population oscillations
around a coexistence steady state.

Lotka, Volterra, and Nicholson recognized that the os-
cillations described by their models are not stable [1,4].
The Nicholson-Bailey map admits an unstable steady state;
for the LV system, the fixed point is marginally stable,
rendering the system extinction-prone for any noise am-
plitude. Indeed, experimental and theoretical studies of
both systems reveal that the oscillations increase in size
until one of the species becomes extinct [5,6]. Spatially
extended systems, on the other hand, seem to support
sustained oscillations, as emphasized by field studies [7],
experiments, [8], and numerics [9].

These findings give an appeal to Nicholson’s [4] old
proposal about migration-induced stabilization, i.e., that
desynchronization between weakly coupled spatial
patches, together with the effect of migration, stabilize
the global populations. Unfortunately, examination of this
idea in many studies, summarized in a recent review article
[10], yields negative results. Generically, diffusion stabil-
izes the homogenous manifold and different spatial patches
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get synchronized, leading back to the well-mixed unstable
dynamics [11]. Diffusion induced instability may occur if
the migration rate of the predator is much smaller than that
of the prey [12], or in a case where the reaction parameters
vary on different spatial patches [13]. Neither of these
conditions explains the results in homogenous systems
considered in [8,9]. It seems that the combined effect of
noise and diffusion is a necessary precondition for popu-
lation stabilization. However, up until now the qualitative
nature of the underlying mechanism has remained obscure,
and no theoretical framework that allows for quantitative
prediction has been presented.

Let us demonstrate the stability problem using the para-
digmatic LV model [2]. The model describes the time
evolution of two interacting populations: a prey (b) popu-
lation that grows with a constant birth rate ¢ in the absence
of a predator, and a predator population (a) that decays
(with death rate ) in the absence of a prey. Upon encoun-
ter, the predator may consume the prey with a certain
probability. For a well-mixed population, the correspond-
ing PDE’s are

da

b
el = ob — Aab, 1
oF o 2d (D

pma + Ajab, Y
where A; and A, are the relative increase (decrease) of the
predator (prey) populations due to the interaction between
species, correspondingly.

The system admits two unstable fixed points: the absorb-
ing state a = b = 0 and the state @ = 0, b = co. There is
one marginally stable fixed point at @ = /Ay, b = u/A,.
The system supports a conserved quantity H,

H = A\b+ Aa — wln(a) — oln(b), 2)

and the phase space is segregated into a collection of
nested one-dimensional trajectories as illustrated in
Fig. 1. Without loss of generality, we employ hereon the
symmetric parameters 4 = o = A} = A, = 1.
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FIG. 1. The LV phase space (left panel) admits a marginally | = Swe 0 e

stable fixed point surrounded by close trajectories (three of these
are plotted). Each trajectory corresponds to single H defined in
Eq. (2), where H increases monotonically along the (dashed) line
connecting the center with the a = 0 wall, as shown in the lower
right panel. In the upper right panel, the period of a cycle T is
plotted against H, and is shown to increase almost linearly.

Given the integrability of that system, the effect of noise
is quite trivial; the system wanders between trajectories,
thus performing random walk in H. The amplitude of
oscillation is growing, and extinction occurs when the
trajectory hits the zero population state for one of the
species. In Fig. 2, the survival probability Q(¢) (the proba-
bility that a trajectory does not hit the absorbing walls until
t) is shown for different noise amplitudes.

Our first observation is that these stability features
change dramatically if the system is nor well mixed. The
simplest example is the LV system on two patches (i, j €

{1,2}:

3 = —Mma; + )Ll-a,»b,- + Da(aj - a,-)
: 3)
= O'bt' - )\iaib[ + Db(bj - bl)

The invariant manifold is the two dimensional subspace
a, = a,, by = b,. The time evolution of that system, with
an additive noise [14], equal diffusivities and symmetric
reaction rates is obtained through Euler integration. In the
limit D = 0 the patches decouple while if D = oo they act
like a single patch, and in both situations the system goes
extinct. However, between these two extremes, there is a
region where the combined effect of diffusion and noise
stabilizes a finite region within the invariant manifold, as
demonstrated in Fig. 3.

The LV system is somewhat complicated, since the
angular velocity depends not only on H, but also on the
location along a trajectory. In order to clarify the origin of
the stable cycles, let us introduce a toy model that imitates
the main features of the real systems. Although that model
does not allow for an absorbing state, it captures the basic
mechanism for stabilization of spatially extended systems
in the presence of noise.
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FIG. 2. The survival probability Q(¢) is plotted versus time for
a single patch noisy LV system. Equations (1) (with the sym-
metric parameters) were integrated numerically (Euler integra-
tion with time step 0.001), where the initial conditions are at the
fixed point @ = b = 1. At each time step, a small random
number 7(f)Ar was added to each population density, where
n(t) € [—A, A]. A typical phase space trajectory, for A = 0.5,
is shown in the inset. Using 300 different noise histories, the
survival probability is shown here for A = 0.5 (full line), A =
0.3 (dotted line) and A = 0.25 (dashed line). Clearly, Q(¢)
decays exponentially at long times, Q(f) ~ exp(—1t/7), where
1/7 scales with A2

The toy model deals with the phase space behavior of
diffusively coupled oscillators, where the angular fre-
quency depends on the radius of oscillations. With additive
noise, the Langevin equations take the form,
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FIG. 3. The typical persistence time as a function of the
diffusion rate for different levels of noise. The values of 7
were gathered from survival probability plots (like those in
Fig. 1) and are displayed here for the two-patch system. 7 grows
very rapidly with the migration rate for small diffusion values,
and decays with D for large diffusivities. Data is shown for
different noise intensities A = 0.3 (triangles), 0.5 (squares), and
1.0 (circles).
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a_tl = o(x;, y)yi + Di(x; — x;) + m,,(0),

9yi
at
where all the n’s are taken from the same distribution. If
the angular frequency is location independent, w(x, y) =
g, the problem is reduced to coupled harmonic oscilla-
tors, a diagonalizable linear problem that admits two
purely imaginary eigenvalues in the invariant, homogenous
manifold. With noise, the random walk on that manifold is
independent of the motion in the fast manifold and the
oscillation radius diverges with the square root of time.
Now let us define the oscillation radius for each patch,

4)
= —o(x;, y)x; + Da(y; — yi) + 1,0,

ri = 4/x7 +y? for i = 1, 2, and assume that the angular
frequency depends only on that radius and is € independent
[6; = arctang(y;/x;)]. With that, the total phase & = 6, +
6, decouples and the three-dimensional phase space mo-
tion is dictated by the equations (we take D; = D, = D
and define p =6, —0,,R=r; +ry, r =r; — ry):

R = —2Dsin*(¢/2)R + g, %)
i = —2Dcos*(¢p/2)r + 7,, (6)
24,2 SR
b= —2D<%> sing + w(ry) — w(r)) + (ﬂ — 2)
I ry ry
(7

As before, all the 7’s are taken from the same distribution.

Equations (5)—(7) clarify the role of desynchronization
as the stabilizing mechanism. The dynamics in the homo-
genous (R) manifold look very much like that of an over-
damped harmonic oscillator in noisy environment,
z = —kz + n(r), that admits the steady state Boltzman
distribution P(z) ~ exp(—kz?/A?). However, if the phases
of these two patches synchronize and the expectation value
of @2 vanishes, so does the “spring constant” of the
oscillator. Without that restoring force, the motion on the
R manifold is a simple random walk, so the oscillation
amplitude grows indefinitely. Phase (¢) desynchroniza-
tion, thus, is the crucial condition for stabilization. This
feature is stressed in the inset of Fig. 4, where the flow lines
of the deterministic dynamics in the R — ¢ plane are
sketched: the line ¢ = 0 is marginally stable, but any
deviation leads to inward flow.

Close to the invariant manifold, when ¢ and r/R are
much smaller than 1, the amplitude desynchronization r is
solvable. Neglecting corrections of order ¢?, 7 = —2Dr +
7, which is again an equation for an overdamped har-
monic oscillator, so P(r) ~exp(—Dr?>/A?) and the r?
typical fluctuation around zero is of order A?/D.
However, the amplitude desynchronization factor r does
not appear in (5), and the stabilization is determined only
by the phase. Accordingly, the system supports an attrac-
tive manifold iff the amplitude desynchronization yields
phase desynchronization.
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FIG. 4. Histograms showing the probability to be at a distance
R from the origin as a function of R, for two coupled noisy
oscillators, where w =1+ ar with D = 0.01, and various
values of noise strength A, and angular velocity gradient «.
As expected, the phase space confinement is proportional to «,
from a = 1 (triangles) to a = 0.5 (circles) to @ = 0.1 (solid
line), all for the same level of noise A = 0.1. On the other hand,
as predicted by the linear analysis close to the invariant mani-
fold, the confinement is noise independent, and the three solid
lines corresponding to different levels of noise (A = 0.1, 0.5, 1
with the same a = 0.1) almost coincide. The inset shows the
flow lines on the » = 0 plane. The invariant manifold ¢ = 0 is
marginally stable, but there is some flow towards the center for
any finite ¢.

Another piece of information may be gathered from the
harmonic limit, w(r) = w,. Here there should be no phase
synchronization, as we already diagonalized the linear
equation and find no restoring term in the homogenous
plane. Looking at Eq. (7) with w(r;) — w(ry) = 0, one
concludes that the rightmost (noise) term in (7) is irrele-
vant. The dependence of the frequency on the amplitude
(i-e., the dependence of w on r) should be the factor that
allows the translation of amplitude desynchronization into
a phase desynchronization. Intuitively, when two patches
with different oscillation amplitudes move with different
angular velocities, this immediately yields phase
differences.

Without the noise term, Eq. (7) may be written as,

) 24,2
b= —2D<—II§2 - :Z)singb - r‘l—‘: ~—2D¢ - ri—‘:, ®)
where the approximation is valid close to the invariant
manifold. Again, we face an overdamped harmonic oscil-
lator, where now the source of noise is the r fluctuations
(obeying the Boltzman statistics). With that, {(¢2) ~
[w'(r)J?A%/D? may be plugged into (5)

R = —2Dsin*(¢/2)R + ijg = —D{(*)R/2 + i1z, (9)

and one finds (R?) ~[D/w'(r)]?. This radius of stable
oscillations diverges as D — oo, as expected. The small
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FIG. 5. The average AH at an elementary time step (0.001 of a
unit time) as a function of the angle ¢ between the patches.
While a simple phase space random walk yields on average
positive AH, this property is shown here to hold only for small
¢. At larger angles, the diffusion between patches forces the
system toward the center and the average A H becomes negative.
Results are shown for A = 0.1 (full line) and A = 1 (dashed
line). The inset shows the probability distribution function for H
at these two noise levels.

D instability (decoupled patches) manifests itself in the
divergence of (r*) as D — 0. Surprisingly, since both the
restoring force and the noise in the invariant manifold are
proportional to A2, the expected R distribution has to be
noise independent at that limit, as demonstrated in Figs. 4
and 5.

Equations (4) may be generalized to include the case of
an unstable focus. The same analysis [15] shows that, for
small noise and small repulsion, a noise-induced transition
will occur at € ~ (w?A%/D?), where € is the Liapunov
exponent. If the noise is small enough, the desynchroniza-
tion is weak and the system is rendered extinction prone.
Strong noise, conversely, stabilizes the system and ensures
conservation. The mechanism presented here is thus rele-
vant to any system where the local dynamic admits an
unstable focus (e.g., above Hopf bifurcation), provided
that the spatial coupling is diffusive.

Now let us check our predictions for the LV system. At
the vicinity of the homogenous fixed point, the dynamic is
similar to a single patch dynamic. The square of the
average distance from the fixed point grows linearly with
time at the beginning, with a slope that depends on the
noise amplitude, as expected for the random walk in the
invariant manifold scenario. For “intermediate’” migration
(e.g., D =0.01), the average distance from the origin
saturates, while the chance to find the system at large H
becomes exponentially small, as illustrated in Fig. 5. In
agreement with the results of the toy model, the flow
toward the center is correlated with the phase desynchro-
nization, leading to stabilization at finite H. As predicted,
while the width of the ¢? distribution depends strongly on

the noise amplitude, the oscillation amplitude is almost
noise independent.

In conclusion, we suggest a novel solution to a long-
standing conundrum: the stabilization of a noisy unstable
dynamical system on spatial domains. The basic feature
that leads to stabilization is the dependence of angular
velocity on phase space coordinates. This dependence
allows the noise to desynchronize spatially coupled
patches, and then migration decreases concentration gra-
dients and causes an inward flow.
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