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We propose and analyze a new method for manipulation of a heavy-hole spin in a quantum dot. Because
of spin-orbit coupling between states with different orbital momenta and opposite spin orientations, an
applied rf electric field induces transitions between spin-up and spin-down states. This scheme can be used
for detection of heavy-hole spin resonance signals, for the control of the spin dynamics in two-
dimensional systems, and for determining important parameters of heavy holes such as the effective g
factor, mass, spin-orbit coupling constants, spin relaxation, and decoherence times.
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Spintronics, or spin-based electronics, is one of the
fascinating and rapidly growing areas in solid state physics
and modern technology [1]. Exploiting both the charge and
spin degrees of freedom of carriers, it offers wide oppor-
tunities for developing devices with unique functionalities.
Operation of single charge or spin is the ultimate limit for
such devices. Quantum dots (QDs) have proven useful for
this goal [2], since experiments on readout and coherent
manipulation of a single spin in QDs have already been
performed successfully [3–5]. Furthermore, due to sup-
pression of the spin-orbit interaction (SOI) in QDs [6], the
electron spin in a QD has long relaxation times T1 (up to
hundreds of milliseconds) [3,7]. The spin thus is an attrac-
tive candidate as a carrier of quantum information [2], if its
state stays coherent over sufficiently long times (described
by the spin decoherence time T2). At low magnetic fields,
in III-V semiconductor QDs there is a rather strong hyper-
fine interaction between an electron spin and surrounding
nuclear spins leading to a significant degradation of the
spin coherence [8,9]. Very recently, based on the idea of
state narrowing via projective measurements [9], several
proposals have been made to limit the hyperfine-induced
decoherence [10,11] and, therefore, to increase T2 times
for electron spins in QDs, which currently range up to
microseconds [4,5].

Electron spin resonance (ESR) provides a powerful tool
for coherent manipulation of spins, which is of great
importance for spintronics [12]. By applying short resonant
microwave pulses, an arbitrary superposition of spin-up
and spin-down states is created. Rabi oscillations and spin-
echo experiments are based on this approach [4]. In such
experiments, the ESR signal can be detected directly by
measuring the absorption of radio-frequency (rf) power
[12] via charge transport through a QD [5,13] or by using
optical detection of magnetic resonance techniques
[14,15]. Usually, ESR methods involve magnetic-dipole
transitions induced by an oscillating magnetic field.
However, there has been a strong revival of interest in
electric-dipole spin resonance (EDSR) controlled by alter-
nating electric fields [16–20] that provides the ability to

manipulate and detect electron spins at the nanometer scale
and may be useful for distinguishing different SOI
mechanisms.

Recently, the idea to use heavy-hole (HH) spins (instead
of electron spins) as carriers of quantum information has
generated a lot of interest. On one hand, the hyperfine
interaction of holes with lattice nuclei is suppressed, since
the valence band has p symmetry. On the another hand, the
spin relaxation and decoherence for holes due to HH-
phonon interaction could be comparable to or even longer
than that for electrons in flat QDs [21]. Besides long
coherence times, an equally important requirement is the
ability to manipulate spins coherently. While this goal can
be easily achieved for electrons using standard ESR, this is
no longer so for holes, since magnetic rf fields turn out not
to couple to the hole spin (in the leading dipole approxi-
mation). However, as shown in the following, this problem
can be circumvented by making use of EDSR techniques
for holes. In particular, we show that, due to SOI between
states with different orbital momenta and opposite spin
orientations, an applied rf electric field can induce transi-
tions between spin-up and spin-down states and can be
used for efficient detection of resonances and manipulation
of HH spins in 2D quantum dots.

We consider a single HH confined in a III-V semicon-
ductor QD exposed to a static magnetic field B of arbitrary
direction with respect to the [001] growth direction of a
QD. Because of confinement along the growth direction,
HH and light-hole (LH) subbands are split and, for thin
enough QDs, SOI between LH and HH states can be taken
into account perturbatively; therefore, HHs can be treated
as quasiparticles with pseudospin S aligned along the
growth direction (Sx � Sy � 0 and Sz � 3�z=2, where
�z is the Pauli matrix) and with the following effective
Hamiltonian [21]:

 H �
1

2m
�P2

x � P
2
y� �U�x; y� �HSO �

1

2
g?�BB?�z:

(1)

Here m is the effective HH mass, P � p� jejA�r�=c,
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A�r� � ��yB?=2; xB?=2; yBx � xBy�, B � �Bx; By; B?�,
U�x; y� is the lateral confinement potential of a QD, g? is
the component of the g-factor tensor along the growth
direction, and
 

HSO � �P�P�P��� � i�P
3
���

�
3�0��B

m0�
B�P2

��� � H:c: (2)

is the SOI term of HHs consisting of three contributions:
the Dresselhaus term (�) [21], the Rashba term (�) [22],
and the last term (due to SOI between LHs and HHs)
combines two effects: orbital coupling via nondiagonal
elements in the Luttinger-Kohn Hamiltonian (/P2

�) and
magnetic coupling via nondiagonal elements in the
Zeeman term (/B�) [23]. This latter term represents a
new type of SOI which is unique for HH and plays an
important role in the EDSR considered below. Here �� �
��x � i�y�=2, P� � Px � iPy, B� � Bx � iBy, �0 and �
are the Luttinger parameters [23], m0 is the free electron
mass, � is the splitting between LH and HH subbands, and
the SOI constants (� and �) depend on band parameters,
confinement along the growth direction, and the energy
spacing between LH and HH subbands � [21]. Note that
we neglect the Zeeman splitting due to an in-plane mag-
netic field Bk � �Bx; By� (because of strong anisotropy of
the HH g factor: gk � g? [24]) as well as the orbital effect
of the in-plane magnetic field, which is negligibly small for
Bk � c@=eh2 [25], where h is the QD height.

The eigenstates of (1) for parabolic lateral confine-
ment �U�x; y� � m!2

0�x
2 � y2�=2	 and for vanishing SOI

(HSO � 0) are given by the product of Fock-Darwin and
spin states: jn; ‘; si � jn; ‘ijsi, where n 2 N and j‘j 
 n
are the principal and azimuthal quantum numbers, re-
spectively, and s � �3=2. For finite magnetic fields, the
twofold degeneracy of the Fock-Darwin spectrum is lifted
by the Zeeman splitting: En;‘;s � @��n� 1� � @!c‘=2�

@!Zs=3 (� �
������������������������
!2

0 �!
2
c=4

q
, !Z � g?�BB?=@, l ���������������

@=m�
p

).
Taking the SOI into account as a perturbation, we find

that in first-order perturbation theory the two states corre-
sponding to the Zeeman-split ground state level can be
written as follows:

 j�i � j0; 0;�3=2i � i��1 j1;�1;�3=2i

� ��2 j3;�1;�3=2i � ��j3;�3;�3=2i

� ��B�j2;�2;�3=2i; (3)

where ��1 � ��ml�3!��!
2
� �!

2
��=@!

�
D , �� �

3
���
2
p
�0��B�ml�2!2

�=m0�@!�
k

, and !� � ��!c=2

(!�D , !�
k

, ��, and ��2 [26] are not relevant for the present
discussion). From Eq. (3), it can be seen that HSO leads to
coupling of the two lowest states j0; 0;�3=2i to the states
with the opposite spin orientations and different orbital

momenta. Because of this spin-orbit mixing of the HH
states, the transitions between the states j�i with emission
or absorption of an acoustic phonon become possible, and
this is the main source of the spin relaxation and decoher-
ence of HHs (because the hyperfine interaction of holes
with nuclei is suppressed) [21]. The spin relaxation be-
tween the states j�i due to Rashba spin-orbit (RSO) and
Dresselhaus spin-orbit (DSO) terms is considered in detail
in Ref. [21]. Similarly, we can find the contribution 1=Tk1 of
the third SOI term in Eq. (2) to the spin relaxation rate
1=T1:

 1=Tk1 �
B2
k
!5
Zl

4

28��@

�
N!Z
�

1

2

�
��� � ���2

X
�

e�!
2
Zl

2=2s2
�

s7
�

I�5�

(4)

(see Ref. [21] for details). Note that in contrast to electrons
[6] there are no interference effects between DSO, RSO,
and SOI due to LH-HH coupling and in-plane magnetic
field; therefore, the total spin relaxation rate 1=T1 is the
sum of rates 1=T1 � 1=TDSO

1 � 1=TRSO
1 � 1=Tk1 . Note that

in the limit of low temperatures (kBT � @!Z), T2 � 2T1

[21].
In Fig. 1, the total spin relaxation rate 1=T1 is plotted as a

function of perpendicular magnetic field B?. As can be
seen from this figure and Eq. (4), the SOI due to in-plane
magnetic field leads to an additional peak which is due to
anticrossing [21,27] between the energy levels E0;0;�3=2

and E2;�2;�3=2 (see the second avoided crossing in the
inset). In the inset, the first (third) avoided crossing result-
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FIG. 1 (color online). Heavy-hole spin relaxation rate 1=T1 in
a GaAs QD versus an applied perpendicular magnetic field B?
(the height of a QD is h � 5 nm, the lateral size l0 ����������������
@=m!0

p
� 40 nm, � � 1:2, �0 � 2:5, g? � 2:5 [24], and the

other parameters are given in Ref. [21]). Inset: Energy differ-
ences of lowest excited levels with respect to the ground state
E0;0;�3=2. The second avoided crossing comes from the SOI and
the in-plane magnetic field Bk [3rd term in Eq. (2)]. The
anticrossing gap is proportional to Bk, implying that the coupling
between corresponding states can be controlled externally.
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ing from DSO (RSO) coupling corresponds to the first
(third) peak of the spin relaxation curve in Fig. 1.

Let us now consider methods for the manipulation and
detection of the HH spin in QDs. For electrons in 2D
structures, an applied oscillating in-plane magnetic field
couples spin-up and spin-down states via magnetic-dipole
transitions, and it is commonly used in ESR, Rabi oscil-
lation, and spin-echo experiments [4]. From Eq. (3), it is
easy to tell that magnetic-dipole transitions (�n � 0,
�‘ � 0, and �s � �1) are forbidden, and, due to spin-
orbit mixing of the states j0; 0;�3=2i with
i��1 j1;�1;�3=2i, electric-dipole transitions (�n � �1,
�‘ � �1, and �s � 0) are most likely to occur.
Therefore, the HHs are affected by the oscillating electric
field component and not by the magnetic one.

We consider a circularly polarized electric field ro-
tating in the XY plane with frequency !: E�t� �
E�sin!t;� cos!t; 0�. Therefore, the interaction of HHs
with the electric field is described by the Hamiltonian
HE�t� � �jejE=m!��cos!tPx � sin!tPy�. The coupling
between the states j�i is given by h�jHE�t�j�i � HE

�� �
�HE
���

� � dSOEe�i!t, where

 dSO � �jejl=2!����1 !� � �
�
1 !�� (5)

is an effective dipole moment of a HH depending on DSO
coupling constants, perpendicular magnetic field B?, lat-
eral size of a QD, and frequency of an rf electric field [��1
and !� are defined below Eq. (3)].

In the framework of the Bloch-Redfield theory [28]
(taking into account also off-diagonal matrix elements),
the effective master equation for the density matrix �nm
assumes the form of Bloch equations [28], with the detun-
ing of the rf field given by 	rf � !Z � 	!�! (	! is the
resonance shift due to decoherence). 2dSOE=@ is the
Larmor frequency, T1 � 1=�W�� �W��� the spin relaxa-
tion time (Wnm is the transition rate from statem to state n),
T2 � 2T1 [21] the spin decoherence time, and �Tz �
�W�� �W���T1 the equilibrium value of �z without rf
field.

The coupling energy between a HH and an oscillating
electric field is given by

 hHE�t�i � Tr��HE�t�	 � �dSO E�t�; (6)

where dSO � dSO�i��� � i���; ��� � ���; 0� is the di-
pole moment of a HH. Therefore, the rf power P �
�dhHE�t�i=dt � �!dSOE�� absorbed by a HH spin sys-
tem in a stationary state is given by [29]

 P �
2!�dSOE�

2T2�
T
z =@

1� 	2
rfT

2
2 � �2dSOE=@�2T1T2

: (7)

In Fig. 2, the dependence of P on a perpendicular
magnetic field B? and frequency ! of the oscillating
electric field is plotted. The rf power P absorbed by the
system has three resonances and one resonant dip. The
first resonance occurs at zero detuning 	rf � 0. For the
QD considered, the resonance shift 	! is negligible

(	! � 1 kHz); therefore, the first resonance appears
when the energy of rf radiation equals the Zeeman en-
ergy of HHs: Br;1? � @!=g?�B. The shape of this reso-
nance (at certain !) is given by P � @!�Tz =2@�1�

@
2	2

rfT2=�2dSOE�2T1	. At low magnetic fields (B< Br;2? �

@!0=g?�B

������������������������������
1� 2m0=g?m

p
), 	! is the Lamb shift in-

duced by zero-point fluctuations of acoustic phonons [30]

 	! � �2Cphm
6l5!6

�=�3!� �!Z�
2: (8)

The field dependence of 	! shows up in an effective g?
factor which scales approximately as B1=2.

If the first and second resonances are well separated
(!� !�), then the absorbed power can be estimated as

 P � 2!�dSOE�2�Tz =�@	2
rfT2�; (9)

in the region of the second and third resonances and the
resonant dip. The second resonance corresponds to anti-
crossing of the levels E0;0;�3=2 and E1;�1;3=2 (see the first
avoided crossing in inset in Fig. 1) at !� � !Z [21] (at
B � Br;2? ). At the anticrossing point, there is strong mixing
of the spin-up and spin-down states, and the dipole moment
of a HH spin system is maximal dmax

SO � jejl!Z=2! and
equals to half of the lowest electric-dipole moment of a
quantum dot (jejl!�=!). Therefore, the height of the
second resonance is given by �el!ZE�2=2@!	2

rfT2. The
resonant dip appears at Bd? � �@!0=2g?�B�

���������������������
2m0=g?m

p
,

which corresponds to ��1 !� � �
�
1 !� � 0 and to zero

dipole moment [see Eq. (5)]. The third resonance reflects
the peak in the spin decoherence rate T�1

2 due to applied in-
plane magnetic field (see Fig. 1) at the second anticrossing
point (the second avoided crossing in inset in Fig. 1) at
2!� � !Z (Br;3? � 4@!0=g?�B

������������������������������
1� 4m0=g?m

p
). From

the positions of the resonances, we can determine g?, m,
and !0; from the shape and the height of those we can
extract information about the SOI constants �, �, and SOI
strength due to in-plane magnetic field (which is propor-
tional to �0�=�). Moreover, we can determine the depen-
dence of the spin relaxation and decoherence times on B?.
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FIG. 2 (color online). Absorbed power P (meV=s) as a func-
tion of perpendicular magnetic field B? and rf frequency !
(T2 � 2T1, E � 2:5 V=cm, Bk � 1 T, and the other parameters
are the same as those in Fig. 1).
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We now consider dynamics of the HH spin hSzi �
�3=2�Tr���z� � �3=2��z. The Rabi oscillations at zero
detuning (	rf � 0) of the spin are given by

 hSzi � STz � e
��T�1

1 �T
�1
2 �t=2

��
3

2
� STz

�
cos!Rt

�

�
�dSOE�

2T2

@
2!R

STz �
T�1

1 � T�1
2

2!R

�
3

2
� STz

��

� sin!Rt
�
; (10)

where !R �
�������������������������������������������������������������
�dSOE=@�2 � �T�1

1 � T�1
2 �

2=4
q

is the Rabi
frequency, and STz � �3=2��Tz =�1� �dSOE=@�

2T1T2	.
As can be seen from Fig. 3, the spin dynamics is essen-

tially governed by the magnetic field B?. The strong damp-
ing of Rabi oscillations is caused by fast HH spin
relaxation at B? � 0:8 T � Br;2? (first peak in Fig. 1). A
slight increase in B? drastically affects the dynamics of the
HH spin (dotted line in Fig. 3): Rabi oscillations become
stable due to much longer spin relaxation times and, at
B? � 0:865 T � Bd?, the effective dipole moment dSO �

0, which substantially decreases !R.
In conclusion, we have introduced an efficient method

for spin detection and manipulation of a HH in a QD.
Furthermore, this method could be applied to determine
important parameters of HHs in QDs (such as the effective
g factor, mass, SOI constants, spin relaxation, and deco-
herence times), from the position and shape of resonances
in the rf power absorbed by the system or from the ampli-
tude evolution and the frequency of the Rabi oscillations.
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FIG. 3 (color online). Rabi oscillations at three different values
of the perpendicular magnetic field: B? � 0:8 T (damped fast
oscillations), B? � 0:865 T (dotted line), and B? � 0:5 T (solid
line). Bk � 0, 	rf � 0, E � 1:5 V=cm, and the other parameters
are the same as those in Fig. 1.
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