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We measure the noise added by an atomic point contact operated as a displacement detector. With a
microwave technique, we increase the measurement speed of atomic point contacts by a factor of 500. The
measurement is then fast enough to detect the resonant motion of a nanomechanical beam at frequencies
up to 60 MHz and sensitive enough to observe the random thermal motion of the beam at 250 mK. We
demonstrate a shot-noise limited imprecision of 2:3 fm=

������
Hz
p

and observe a 78 aN=
������
Hz
p

backaction force,
yielding a total uncertainty in the beam’s displacement that is 42 times the standard-quantum limit.
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To both realize a quantum-limited measurement of po-
sition and develop ultrasensitive detectors, there has been a
renewed effort to more precisely measure the motion of
nanomechanical elements. Recent examples include the
demonstration of near quantum-limited displacement sen-
sitivity using single-electron transistors [1,2] as well as
novel sensors of nanomechanical motion that use meso-
scopic strain gauges in the form of carbon nanotubes [3] or
quantum point contacts [4]. There has been a parallel
development in theories that calculate the noise properties
of these sensors [5–10], focusing on how closely they can
approach displacement measurement at the standard-
quantum limit [10,11]. Reaching the standard-quantum
limit is a compromise between minimizing the purely
apparent motion of the nanomechanical element inferred
from noise at the output of the sensor, that is, the displace-
ment imprecision Sx�!�, and minimizing the real random
motion caused by the sensor, described as a backaction
force with spectral density SF�!�. A continuous linear
measurement of position is subject to the Heisenberg con-
straint

�����������
SxSF
p

� @, Ref. [12]. When measuring the position
of a harmonic oscillator, the standard-quantum limit is
most closely approached when Sx�!� � jH�!�j2SF�!� as-
suming Sx�!� and SF�!� are uncorrelated, where H�!� is
the harmonic oscillator’s response function [10,11].

A displacement detector based on electrons tunneling
from an atomic point contact (APC) has three attributes
that make it a promising amplifier of nanomechanical
motion. First, the intrinsic noise at the output of the atomic
point contact, electrical shot-noise, can easily overwhelm
the noise at the input of conventional amplifiers. This is a
crucial prerequisite for quantum-limited amplification.
Second, the APC need not be operated at ultralow tem-
peratures. Both advantages arise from the relatively large
energy scale, the few electron-volt work function of the
metal, that controls electron tunneling in the APC. Finally,
recent theoretical work [5,7,8,10,13] has predicted that a
displacement detector based on an APC would be a quan-
tum mechanically ideal amplifier. In addition, the atomic

point contact is already an important and commonly used
displacement detector as it provides the exceptional spatial
resolution in scanning tunneling microscopes and me-
chanically adjustable break junctions. Until now, the
atomic point contact neither has been operated with suffi-
cient temporal resolution to sense a nanomechanical ele-
ment moving at its resonance frequency nor has its
backaction been measured.

In this Letter, we measure the intrinsic noise of a dis-
placement sensor based on an atomic point contact, finding
both its imprecision Sx and backaction SF spectral den-
sities. As in scanning tunneling microscopy, we infer the
distance between an atomically sharp point and a nearby
conducting object from the tunneling resistance across the
APC. However, by detecting the APC’s resistance at mi-
crowave frequencies we can measure displacement on
times less than 10 nanoseconds. The measurement is fast
and sensitive enough to resolve the submicrosecond, sub-
picometer resonant motion of a nanomechanical beam
driven by thermal noise at temperatures below 1 K. The
random thermal motion of the nanomechanical beam pro-
vides a calibrated noise source which can be used to
determine the displacement imprecision and backaction
of the APC. Our current realization of this displacement
detector, an APC amplifier, has a displacement impreci-
sion

�����
Sx
p

� 2:3� 0:1 fm=
������
Hz
p

and a backaction
������
SF
p

�

78� 20 aN=
������
Hz
p

yielding a total displacement uncer-
tainty that is 42 times the standard-quantum limit and an
imprecision backaction product

�����������
SxSF
p

� 1700� 400@.
We demonstrate that the imprecision of our measure-
ment is shot-noise limited; however, we also observe that
the backaction force is much larger than theoretically
predicted.

An APC is formed by bringing an atomically sharp
conducting point within 1 nm of another conducting object
[14]. To monitor the size of the gap between the point and
the other object [Fig. 1(a)], a voltage bias is applied across
the gap and the probability of electron tunneling is deter-
mined by measuring the current. The ratio of the voltage V
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to the average current hIi is a resistance R that changes
monotonically with the size of the gap. The APC can then
be regarded as both a transducer and an amplifier of small
displacements dx with an output dhIi � Gdx, where G �
�1=R��@R=@x�hIi is the amplifier’s gain.

Only about 100 kHz of an APC’s intrinsically large
bandwidth is typically realized because the necessarily
high resistance APC [14] is shunted by the large cable
capacitance between the device and the remote mea-
surement electronics [15]. We overcome this band-
width limitation by transforming down the resistance of
the APC towards 50 � with an electrical resonant trans-
former formed out of an inductor L and capacitor C,
inferring the resistance by measuring the on-resonance
(1=2�

�������
LC
p

� 430 MHz) reflected microwave voltage
Vref [Fig. 1(b) and 1(c)], where hIi is now the magnitude
of the microwave current passing through the APC. With
this technique, originally implemented in the radio-
frequency single-electron transistor [15], we achieve a
bandwidth of 30 MHz controlled by the quality factor of
the resonant circuit; detection of motion outside of this
band results in a larger contribution to the measurement
noise by the conventional electronics. We choose to oper-

ate the APC amplifier with a 430 MHz resonance fre-
quency because low-noise microwave amplifiers are
readily available at this frequency, and the resonant circuit
can be fabricated from discrete components.

The mechanical system in this experiment is composed
of a doubly clamped nanomechanical beam next to an
atomically sharp point [Fig. 1(a)]. The beam and point
electrode are made entirely out of gold and are fabricated
fused together. An APC is formed between them by creat-
ing a gap using electromigration [16] in the ultrahigh
vacuum present in a 4 K cryostat; despite this precaution,
it is still possible that contaminants in the gap between the
beam and the point play a role in this experiment. The
beam is 5.6-�m long by 220-nm wide by 100-nm thick
resulting in a total beam mass m � 2:3� 10�15 kg.

We demonstrate the bandwidth of the APC amplifier by
finding the resonant frequencies of the beam. These reso-
nant modes are detected by sweeping the frequency of an
oscillating 50 pN Lorentz force [Fig. 1(b)] applied to the
beam parallel to the substrate (ŷ direction, [Fig. 2(b)]) and
using the APC amplifier to look for resonances [17]. We
observe five resonance frequencies between !0=2� �
18:4 and 57.2 MHz with a typical quality factor of 5000
[Fig. 2(a)]. An interatomic potential between the gold
atoms comprising the APC modifies the resonance fre-
quencies and mode shapes from those expected for a
doubly clamped beam. While for large static applied forces
there is hysteresis in the beam’s displacement [Fig. 1(c)],
for small displacements from mechanical equilibrium the
net effect of the interatomic potential deflecting the beam
can be modeled as a spring spanning the APC, which
connects the point and the beam. In a finite-element simu-
lation, we adjust the compliance of the spring until the
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FIG. 2 (color online). (a) Measured response amplitude (solid)
and phase (dashed) as a function of drive frequency for three of
the five observed resonant modes measured with the APC
amplifier. (b) Corresponding finite-element simulation of beam
mode shapes (dot corresponds to position of spring used to
model the interatomic potential at the APC; color indicates
displacement from equilibrium position with minimum displace-
ment at the ends of the beam).

 

FIG. 1 (color online). (a) Representative scanning electron
micrograph of the nanomechanical system consisting of a doubly
clamped beam suspended above a GaAs substrate and a trian-
gular electrode fused to the beam center; the APC is formed at
the junction between the electrode and the beam. (b) Simplified
schematic consisting of a displacement measurement shown to
the right of the APC and a drive mechanism (using a Lorentz
force created by passing a current through the beam in the
presence of a 9 T magnetic field) shown to the left. (c) Vref

(thick line) and APC resistance (thin line) versus applied force.
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simulated resonance frequencies match those observed.
Although this 180 N=m spring results in simulated mode
shapes that appear complicated [Fig. 2(b)], near a reso-
nance frequency the system behaves like a one-
dimensional simple harmonic oscillator [17] with a normal
(or modal) coordinate whose displacement is equal to the
root-mean-squared displacement of the beam averaged
over the beam’s length [Fig. 2(a)]. The effective spring
constant of this simple harmonic oscillator is then ks �
m!2

0, with m equal to the total mass of the beam.
To characterize the displacement imprecision and

amplifier backaction in our measurement, we find the
noise spectrum �Vref when the beam is not driven by a
Lorentz force [Fig. 3 (main)]. The noise spectrum has two
components, a frequency-independent background and
Lorentzian peaks due to on-resonance Brownian motion
of the beam. We calibrate �Vref in displacement units
through the temperature dependence of the Brownian mo-
tion. Through this ratio of Vref and x and through the
relationship between Vref and R in [Fig. 1(c)], we find
�1=R��@R=@x� � 0:4 nm�1, which is substantially smaller
than in a standard STM due to the small operating resist-
ance R � 33 k� (where we observe minimum impreci-
sion) [18]. From a fit to the Lorentzian peak we extract the
full width of the peak at half maximum �=2� (defined so
that the harmonic oscillator feels a dissipative force
m��@x=@t�), center frequency !0=2�, amplitude �xT ,
and frequency-independent background �xI �

�����
Sx
p

.
These fit values are used to calculate the integrated strength
of the Lorentzian peak �x2

T � �x2
T�=4 as a function of the

cryostat’s temperature Tcryo [Fig. 3 (inset)]. While the
equipartition theorem predicts �x2

T � kBTcryo=ks, we
model �x2

T � �kBTcryo=ks� � �SF=4m�ks�, where the

spectral density of a random force SF depends upon G
(which is proportional to hIi). From this dependence, we
infer that the measurement process imposes a random force
SF effectively heating the beam to a temperature TBA �
SF=4m�kB above Tcryo [Fig. 4(a)]. While we model SF as
independent of Tcryo, TBA has a Tcryo dependence through
�, which changes by 30% in the 0.25 to 10 K range of Tcryo.
For the maximum gain G � 290 nA=nm studied and
!0=2� � 43:1 MHz, we measure both the minimum im-
precision

�����
Sx
p

� 2:3� 0:1 fm=
������
Hz
p

and the maximum
random force

������
SF
p

� 78� 20 aN=
������
Hz
p

acting on the
beam; this random force implies that at Tcryo � 5 K there
is a backaction temperature TBA � 0:73� 0:4 K.

We compare these results to limits imposed by the
Heisenberg uncertainty principle. A Heisenberg-limited
amplifier with gain chosen to operate at the standard-
quantum limit would have an imprecision SSQL

x �

@jH�!�j and a backaction force SSQL
F � @=jH�!�j, where

H�!� � 1=m�!2
0 �!

2 � i!�� is the beam’s response
function [10,11,17]. On resonance, we find that for our

APC amplifier
�����
Sx
p

� 45
����������
SSQL
x

q
and

������
SF
p

� 38
����������
SSQL
F

q
. By
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FIG. 3 (color online). (Main) APC amplifier noise spectrum
�Vref (right axis) versus frequency and corresponding displace-
ment fluctuations of the beam �x (left axis) at 5 K (squares, right
peak) and 10 K (circles, left peak) for G � 290 nA=nm and
square root of Lorentzian fits (lines). (Inset) Integrated strength
�x2

T as a function of Tcryo (dot,G � 290 nA=nm) with a fit (line)
to the model for �x2

T . For low temperatures we observe devia-
tions from the model due to local heating by the bias current of
the dissipative environment coupled to the mechanical system.
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FIG. 4 (color online). (a) Backaction temperature TBA versus
the temperature of the cryogenic system, Tcryo, with gains G �
290 nA=nm (circle), G � 130 nA=nm (square), G � 60 nA=nm
(triangle), and G � 30 nA=nm (cross). Error bars are extracted
from one sigma uncertainties in fits to Lorentzian noise peaks
[Fig. 3]; hollow symbols are excluded from the fit (lines) to the
model. (b) Measurement imprecision quanta Nx � ksSx�=4@!0

(solid dots) and momentum backaction quanta Np �
SF=4m�@!0 (hollow squares) at 5 K as a function of G (which
is proportional to the average current hIi). The uncertainty in
the imprecision (error bars are the size of the solid dots) and
backaction are dominated by the uncertainty in the beam tem-
perature. The measurement imprecision Nx � NSN � NA (solid
line) is the sum of the intrinsic APC amplifier noise NSN �
ksS

SN
I �=4G2

@!0 (dashed line) and the HEMT amplifier noise
NA � ksS

A
I �=4G2

@!0 (dot-dashed line), [Fig. 1(c)].
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assuming that the fluctuations imposed by the random
backaction force are uncorrelated with the measurement
imprecision, we make a worst case estimate of the quantum
nonideality of the APC as a displacement amplifier. We
find that

�����������
SxSF
p

� 1700� 400@, which is 1700 times the
Heisenberg-limited imprecision backaction product. As
with most amplifiers, the APC amplifier imprecision can
be reduced by increasing G at the expense of a larger
backaction [10,11] [Fig. 4(b)]. We have therefore oper-
ated the APC amplifier near an optimum G that minimizes
the total displacement uncertainty on resonance

�������
Stot
x

p
������������������������������������

Sx � SFjH�!0�j
2

p
� 42� 9

���������������������
2@=m!0�

p
, i.e., 42 times the

total displacement uncertainty at the standard-quantum
limit [Fig. 4].

Because the physical origins of the imprecision and
backaction that combine to enforce the Heisenberg limit
in the theoretical treatment of an APC amplifier are readily
understood [7,8], we can speculate about the source of the
nonideality in our APC amplifier. The fundamental im-
precision in the APC is electrical shot noise, that is,
random Poissonian fluctuations in the electron tunneling
rate [7,13]. Similarly, the backaction that enforces the
Heisenberg limit is due to the random magnitude of the
momentum kicks imparted to the beam by each electron
that tunnels [8]. To realize an ideal quantum amplifier,
these sources of imprecision and backaction must domi-
nate. In contrast to single-electron transistor and quantum
point contact displacement detection [1,2,4], it is relatively
easy to ensure that the noise power SAI added by conven-
tional amplifiers and electrical components [Fig. 1(b)] is
overwhelmed by the shot noise of tunneling electrons
SSN
I � 2ehIi�2

���
2
p
=��, where the 2

���
2
p
=� factor arises

from averaging the instantaneous shot noise over one cycle
of the microwave bias. Indeed we find that for G �
290 nA=nm the electrical shot noise accounts for 70% of
Sx and only 30% comes from the rest of the measurement
circuit [Fig. 4(b)].

Since the imprecision is shot-noise limited, we conclude
that the likely source of nonideality in our APC amplifier is
a backaction in excess of the backaction required by the
Heisenberg uncertainty principle. Two sources of excess
backaction force on the nanomechanical beam were con-
sidered by [19]. First, if each tunneling electron imparts a
mean momentum hpi, then shot noise results in a back-
action force. Second, an electrostatic attraction between
the beam and the APC creates a backaction force through a
mutual capacitance and a fluctuating voltage across the
APC. We do not yet understand the origin of the excess
backaction; however, the observed backaction would im-

ply that hpi � e
����������������
SF=SSN

I

q
� 20 times the Fermi momen-

tum, while the capacitive mechanism predicts a cubic
dependence [7] of SF on gain G, apparently inconsistent
with the observed dependence [Fig. 4(b)].

In conclusion, we have demonstrated a method of using
an APC to measure displacement. We increase the electri-
cal bandwidth (the measurement speed) of the APC and
use this bandwidth to sensitively detect the motion of a
nanomechanical beam at frequencies up to 60 MHz. We
observe the imprecision and backaction to set an upper
limit on the nonideality of an APC as a quantum amplifier,
yielding an imprecision backaction product of

�����������
SxSF
p

�
1700@ and a total displacement uncertainty of 42 times the
standard-quantum limit. Since the imprecision of the APC
amplifier is limited by its fundamental noise source, the
shot noise of tunneling electrons, progress towards the
quantum limit will not require an improvement in the
performance of conventional electronics but rather an
understanding of the excess backaction.
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