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The relative entropy between the joint probability distribution of backward and forward sequences is
used to quantify time asymmetry (or irreversibility) for stationary time series. The parallel with the
thermodynamic theory of nonequilibrium steady states allows us to link the degree of asymmetry in the
time signal with the distance from equilibrium and the lack of detailed balance among its states. We study
the statistics of time asymmetry in terms of the fluctuation theorem, showing that this type of relationship
derives from simple general symmetries valid for any stationary time series.
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Detecting time asymmetry or irreversibility in stationary
time series is important not only because time series may
be easier to predict and model in one direction, but espe-
cially because irreversibility is a symptom of non-Gaussian
forcing and dynamic nonlinearities [1,2]. Moreover, when
time series represent the evolution of either stochastic or
deterministic dynamical systems, irreversibility takes on a
special meaning linked to the lack of equilibrium and
detailed balance of the probability fluxes among the system
states. Despite its importance, however, the issue of time
irreversibility has received relatively less attention com-
pared to other aspects of nonlinear time series analysis,
with a few notable exceptions [1–11]. In thermodynamics
and statistical mechanics, reversibility is synonymous with
equilibrium. Steady-state systems that are in equilibrium
obey detailed balance, while nonequilibrium steady-state
(NESS) systems are time irreversible and have a positive
internal entropy production rate [12]. Recently, a renewed
interest has been sparked by the discovery of general
relationships valid also far from equilibrium [13,14]. The
fluctuation theorem (FT), in particular, links the probabil-
ity of realizations that consume entropy to those that
produce it as a function of the system size. The theorem
was originally proposed for many particle systems [15,16],
and was then verified experimentally [17] and derived
theoretically for Markovian processes [18–22].

In this Letter we borrow from the thermodynamics of
NESS and information theory to propose a consistent
framework to quantify the degree of asymmetry in sta-
tionary time series. We also show that FT-type relation-
ships derive from simple symmetries between forward and
backward sequences which are valid with great generality
for any discrete and continuous stationary time series
independently of their dynamics.

Measure of asymmetry.—Let us begin by considering a
stationary time series x assumed for now to be discrete in
time. The series may be naturally discrete or have been
discretized from a continuous series after suitable coarse
graining. Let the joint probability distribution of a se-

quence of n consecutive values of the time series be
p�x1; x2; . . . ; xn�, and the corresponding distribution of
the reverse sequence p̂�x1; x2; . . . ; xn�. The fundamental
symmetry

 p̂�x1; x2; . . . ; xn� � p�xn; xn�1; . . . ; x1� (1)

links the forward and the backward distributions. This
property is very general and independent of any stationar-
ity assumption. With these definitions, a stationary time
series is said to be reversible (or time symmetric) if and
only if p�x1; x2; . . . ; xn� � p̂�x1; x2; . . . ; xn� for any n.
Thus, any time series generated as a Bernoulli sequence
is reversible. In the case of Markov chains with transition
matrix Pij and steady-state distribution �i, time symmetry
(or reversal) holds if [23] �iPij � �jPji, and the chain is
said to be in detailed balance. Although the backward
sequence is still generated by a Markov chain [23], this
has a different transition matrix, P̂ij �

�j
�i
Pji. For station-

ary Markov processes this property is generalized as
p̂�x1jx2�p�x2� � p�x2jx1�p�x1� (see [24], p. 83).

For general stationary time series the degree of time
irreversibility and nonequilibrium can be determined by
how different the backward and forward joint probability
distributions are. A natural statistic to quantify the differ-
ence between p and p̂ is the relative entropy or Kullback-
Leibler distance [25]

 hZni �
X
p�x1; x2; . . . ; xn� log

p�x1; x2; . . . ; xn�
p̂�x1; x2; . . . ; xn�

; (2)

where the sum is intended over all the possible states x1,
x2; . . . ; xn [26]. Equation (2) can be interpreted as the mean
of the difference between the ‘‘surprise’’ of finding a given
sequence in forward time, i.e., logp, and in reverse time,
i.e., logp̂, or equivalently

 Zn � log
p�x1; x2; . . . ; xn�
p̂�x1; x2; . . . ; xn�

: (3)
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hZni is always positive and it is zero only if the two
distributions are equal [25]. It can be shown to be sym-
metric, hZni � ^hZni, because of Eq. (1), and that hZni �
hZn�1i. The same measure is used to quantify the lack of
equilibrium and detailed balance in NESS systems [18,19].
hZni can also be expressed as a difference between the so-
called block entropy [28],Hn, and another form of entropy,
HR
n , introduced in the context of NESS thermodynamics

[19]. Division by n transforms these quantities into entropy
rates, the limits of which, under suitable conditions, con-
verge to

 lim
n!1

hZni
n
� lim

n!1

�
HR
n

n
�
Hn

n

�
� hR � h � �; (4)

where h is the Kolmogorov-Sinai entropy, and � is related
to the internal entropy generation rate (it is always positive
and zero only for time-reversible stationary time series). It
is important to note that hZni is infinite if at least one
sequence is not found in reverse, i.e., if p̂ is zero for at
least one sequence. This is the case, for example, of
irreversible periodic signals and of Markov chains that
have asymmetric zeros in their transition matrices.

The behavior of hZni=n as a function of n is of particular
interest in time series as it describes the degree of temporal
asymmetry at different scales. In the trivial case of
Bernoulli sequences, as well as in the case of two state
Markov processes [4], hZni is always zero, while for
Markov chains with three or more states one gets [19,20]
hZni � n

P
�iPij log��jPij=��iPji��, for n � 2, which

shows, as expected from the behavior of Hn=n [28], that
the corresponding rates are constant and equal to � for
n � 2.

Fluctuation theorem.—An important property for Zn
can be derived solely from (1) and the moment generating
function (MGF) of Zn, Gn�k� � he�kZni. In fact, writing
 

Gn�k� �
X
p�x1; x2; . . . ; xn�

�
p�x1; x2; . . . ; xn�
p̂�x1; x2; . . . ; xn�

�
�k

�
X
p�x1; x2; . . . ; xn�

�
p�x1; x2; . . . ; xn�
p̂�x1; x2; . . . ; xn�

�
��1�k�

; (5)

which follows from (1) and the commutative property of
summation, one obtains

 Gn�k� � Gn�1� k�: (6)

Equation (6) is the FT in the k domain, and implies that the
MGF is symmetric around k � 1

2 . The fact that Gn�0� � 1
and the convexity of the MGF ([29], pp. 48–49) confirm
that hZni is always greater than or equal to zero.
Equation (6) also provides a symmetry among the mo-
ments of p=p̂. In particular, k � 1 corresponds to the
harmonic mean of p=p̂ which is therefore always equal
to 1. A more meaningful form of the FT is obtained
in terms of the probability distribution of Zn, pZn�Zn�.

Using the property of the MGF (e.g., discrete Laplace
transform) that L�1fGn�k� a�g � eaZnL�1fGn�k�g and
L�1fGn��k�g � pZn��Zn�, where L�1f�g denotes inverse
Laplace transform, it is immediate to show that

 pZn��Zn� � pZn�Zn�e
�Zn ; (7)

which implies that the negative tail of the probability
distribution decays faster than the positive one. It is im-
portant to highlight that the two equivalent properties (6)
and (7) require only stationarity, which is implicit in the
definition of the averaging operation of the MGF, and are a
direct consequence of the symmetry property (1) used in
Eq. (5).

Continuous time series.—All of the above properties
remain valid for time series in continuous time and with
continuous state space, with only the proviso of extending
the Kullback-Leibler distance using differential entropies
([25], p. 231). A different and useful formulation valid at a
point in time can also be obtained by assuming that the n
points in the sequence are separated by �t, and then
considering the limit �t! 0. In this limit, in fact, there
is a one-to-one correspondence between the joint proba-
bility density functions (PDF’s) of a sequence of n points
of a time series and that (distinguished by an asterisk) of its
subsequent time derivatives, at a point in time,

 p�x1; x2; . . . ; xn� , p	
�
x;
dx
dt
;
d2x

dt2
; . . . ;

dn�1x

dtn�1

���������x�x1

: (8)

Taking into account that, when the continuous time series
is looked at backwards in time, the odd derivatives change
sign, the fundamental relationship (1) is replaced by

 

p̂	
�
x;
dx
dt
; . . . ;

dn�1x

dtn�1

�
� p	

�
x;�

dx
dt
; . . . ; ��1�n�1 d

n�1x

dtn�1

�
:

(9)

Thus, in analogy to the discrete case, one can define the
continuous version of Eq. (3) as

 Z	n � log
p	

p̂	
; (10)

where the arguments of the joint PDF’s have been dropped
for conciseness. Using conditional probabilities in
Eq. (10), the measure of asymmetry given by the mean
of Z	n can be written as the mean of the asymmetries at any
given level x,

 hZ	ni �
Z
pX�x�hZ	njxi dx; (11)

where pX�x� is the PDF of the stationary process and
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 hZ	njxi �
Z

. . .
Z
p	� _x; �x; . . . jx�


 log
p	� _x; �x; . . . jx�
p	�� _x; �x; . . . jx�

d _x d �x . . . ; (12)

where we used the dot notation for time derivatives [30].
While Eqs. (11) and (12) are problematic to compute for
real time series, a simple measure of asymmetry involving
the first time derivative of a signal can be obtained as

 hZ	2i �
Z
pX�x�

Z
p _X� _xjx� log

p _X� _xjx�
p _X�� _xjx�

dx d _x; (13)

where the integrals extend over the whole domains of X
and _X. In applications to time series, p _X� _xjx� can be easily
computed for different values of x and then averaged out to
obtain (13). Since hZ	ni is strictly increasing with n, hZ	2i
provides a sufficient condition for asymmetry.

Using again the MGF and the properties of the continu-
ous (bilateral) Laplace transforms ([29], pp. 48– 49),
Eqs. (6) and (7) can be shown to hold also for Z	n.
Moreover, the FT is now also valid at a point in time
(independently of stationarity) and for any x,

 pZ	njx;t��Zn; x; t� � pZ	njx;t�Zn; x; t�e�Zn : (14)

For n � 2, Eq. (14) provides a relationship for the PDF of
Z	2 � log�p _X� _xjx�=p _X�� _xjx�� that can be readily verified
in real time series. It is also interesting to derive the
previous property for a general one-dimensional
Langevin equation with drift f�x� and diffusion g�x�. In
this case, _Xjx has a Gaussian distribution with mean equal
to f�x� and variance lim�t!0�g

2�x�=�t� [24,29,31]. It fol-
lows that Z	2jx is a linear function of _Xjx, i.e., Z	2jx �
lim�t!0�2��x=�t�f�x�=�g2�x�=�t��. As a result, Z	2jx is
still Gaussian with mean lim�t!0�2f2�x�=�g2�x�=�t�� and
variance always equal to twice the mean, which is exactly
the condition for a Gaussian distribution to satisfy Eq. (14).
Moreover, since the mean of Z	2jx is proportional to �t,
hZ	2jxi ! 0 for �t! 0. Because of the Markovian nature
this is also true for n � 2 and therefore, as expected, de-
tailed balance and reversibility are always satisfied [24,31].

Applications.—The estimation of the relative entropies
as our measures of asymmetry, hZni and hZ	ni, raises several
technical issues and it is prone to underestimation espe-
cially for high values of n [32,33]. Here we use only a
simple binning procedure, based on equiprobabilistic par-
titioning, to discretize the support of the forward and back-
ward probability distribution, limiting the estimation to
relatively coarse partitioning and small values of n. A
further difficulty for estimation is the occurrence of infin-
ities. Because of statistical errors in the estimation of small
probabilities for finite data sequences, we stipulate that
only finite ratios of the probabilities may contribute to
the estimate, thus excluding infinities generated by pos-
sible forbidden sequences in the reverse direction.

We first apply our method to stochastic time series
generated by xt � �1� ���t � ��t, where �t is the
(asymmetric) jump process with exponential decays of
rate k and exponentially distributed jumps of mean �
occurring as a Poisson process with rate �, while �t is an
Ornstein-Uhlenbeck process with mean and variance equal
to those of �t. Figure 1 shows hZni=n estimated for differ-
ent � for three values of n and equiprobable partition with
eight states. Notice the relatively smooth decay to zero as
the Gaussian noise becomes more dominant, reflecting the
decreasing asymmetries in the signal. Also, hZni=n appears
to increase with n before decaying to a finite limit for large
n (not shown). Computations not reported here also con-
firm the validity of the fluctuation theorem for various n
and partition number. A preliminary comparison has
shown good agreement with the method by [8].

As a second application we consider 50 years of dis-
charge measurements from the Po River, Italy. We first
quantify the asymmetry of the time series by using embed-
ding sequences [7], x1, x1��; . . . ; x1��n�1��, where � is the
delay time and n is the embedding dimension. This allows
us to explore longer temporal windows focusing on opti-
mal values of � and without the estimation problems of
high dimensional sequences. The results [Fig. 2(b)] indi-
cate a strong asymmetry in the time series, which becomes
most evident at a time scale of 10–15 days and is likely
linked to the typical duration of the falling limbs of the
hydrographs after flood peaks. Beyond that temporal
range, the data points tend to become more and more
independent and thus time reversible. We also illustrate
the validity of the FT for the distributions of time deriva-
tives for different values of x, Z	2jx. Figure 2(c) shows the
resulting distribution of slopes for x equal to the mode of
the series. From the distribution of slopes, Z	2jx is found by
taking log�p� _xjx�=p�� _xjx��, from which the probability
distribution of Z	2jx is derived by change of variable,

 

〈
〉

FIG. 1. Asymmetry statistic, hZni=n, for the stochastic process
xt � �1� ���t � ��t (k � 0:07, � � 0:04, � � 0:28) as a
function of � for different block lengths n.
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Fig. 2(d). The general validity of the FT is illustrated in
Fig. 2(e) by taking log�p�Z	2jx�=p��Z

	
2jx�� for the mode,

median, and mean of the time series.
We have presented a statistic measuring temporal asym-

metry in time series which draws on the theory of NESS in
thermodynamics and retains general applicability for both
discrete and continuous cases. We have shown also that the
symmetry in the PDF of log�p=p̂�, referred to as the FT,
applies generally to any stationary time series and arises
from basic properties of its MGF.
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FIG. 2. (a) Portion of Po River (Italy) discharge series,
(b) asymmetry measure computed for different delay times,
(c) PDF of time derivative given x chosen as the mode of the
distribution, (d) PDF of Z	2� _xjx�, and (e) the resulting FT for the
PDF of Z	2jx where x is chosen, respectively, as the mode
(circles), mean (squares), and the median (crosses) of the dis-
charge series.
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